编程语言与工具:为AI开发选择合适的武器

本文涉及的产品
云原生数据库 PolarDB 分布式版,标准版 2核8GB
云原生数据库 PolarDB MySQL 版,通用型 2核8GB 50GB
云原生数据库 PolarDB PostgreSQL 版,标准版 2核4GB 50GB
简介: 【7月更文第16天】在当今人工智能(AI)迅速发展的时代,选择恰当的编程语言和框架就如同为征服未知领域的探险者配备精良装备。本文将聚焦于AI开发中的三大基石:Python语言、TensorFlow框架,以及PyTorch框架,为你的AI之旅提供有力的导航。

在当今人工智能(AI)迅速发展的时代,选择恰当的编程语言和框架就如同为征服未知领域的探险者配备精良装备。本文将聚焦于AI开发中的三大基石:Python语言、TensorFlow框架,以及PyTorch框架,为你的AI之旅提供有力的导航。

Python:AI开发的通用语言

Python,以其简洁明了的语法和强大的生态系统,成为了AI开发者的第一选择。它不仅易于学习,还拥有丰富的科学计算和数据处理库,如NumPy、Pandas等,这些都为AI开发提供了坚实的基础。

代码示例 - 使用Python与NumPy进行简单数组运算:

import numpy as np

# 创建一个随机数组
array_a = np.random.rand(3, 3)
array_b = np.random.rand(3, 3)

# 执行矩阵乘法
result = np.dot(array_a, array_b)
print(result)

TensorFlow:谷歌的机器学习巨擘

TensorFlow,由谷歌开发,是目前最流行的深度学习框架之一。它支持静态计算图模型,非常适合于大规模的机器学习项目和部署到生产环境。TensorFlow提供了丰富的API,兼容多种编程语言,且其TensorBoard工具对于模型可视化和调试非常有用。

代码示例 - 在TensorFlow中创建一个简单的线性模型:

import tensorflow as tf

# 定义变量
W = tf.Variable(tf.zeros([1]), name='weight')
b = tf.Variable(tf.zeros([1]), name='bias')

# 定义线性模型
def linear_model(x):
    return W * x + b

# 定义损失函数
def loss_fn(y_true, y_pred):
    return tf.reduce_mean(tf.square(y_true - y_pred))

# 初始化变量
init = tf.global_variables_initializer()

# 创建一个会话来运行TensorFlow操作
with tf.Session() as sess:
    sess.run(init)
    # 假设一些输入输出数据
    x_data = [1, 2, 3]
    y_data = [2, 4, 6]
    # 计算损失
    loss = sess.run(loss_fn(linear_model(x_data), y_data))
    print("Loss:", loss)

PyTorch:灵活的动态计算图

PyTorch,由Facebook支持,以其动态计算图和极佳的开发体验而闻名。它允许开发者在运行时修改计算图,这使得实验快速迭代变得异常简便,特别适合于研究和快速原型开发。

代码示例 - 使用PyTorch构建一个简单的线性回归模型:

import torch

# 定义模型
class LinearRegressionModel(torch.nn.Module):
    def __init__(self):
        super(LinearRegressionModel, self).__init__()
        self.linear = torch.nn.Linear(1, 1)

    def forward(self, x):
        return self.linear(x)

model = LinearRegressionModel()

# 定义损失函数和优化器
criterion = torch.nn.MSELoss()
optimizer = torch.optim.SGD(model.parameters(), lr=0.01)

# 假设输入和目标数据
x_data = torch.randn(100, 1)
y_data = torch.randn(100, 1)

# 训练模型
for epoch in range(100):  
    # 前向传播
    outputs = model(x_data)
    loss = criterion(outputs, y_data)

    # 反向传播和优化
    optimizer.zero_grad()
    loss.backward()
    optimizer.step()

print('Finished Training')

结语

Python作为AI开发的首选语言,结合TensorFlow和PyTorch两大框架,构成了现代AI研发的黄金组合。TensorFlow以其强大的部署能力和稳定性,在工业界备受青睐;而PyTorch凭借其灵活性和易用性,在学术界和快速原型开发中占据一席之地。选择哪一种,需根据项目需求、团队熟悉度及长远目标综合考虑。不论是探索科研前沿还是构建企业级应用,掌握这些工具都将是你迈向AI领域成功的关键一步。

本文作为系列文章的开篇,旨在为读者搭建起对AI开发语言和工具的基本认识框架。在后续的文章中,我们将进一步深入探讨每种工具的高级特性、最佳实践以及实际案例分析,敬请期待。

目录
相关文章
|
22天前
|
机器学习/深度学习 人工智能 自然语言处理
DeepSeek Artifacts:在线实时预览的前端 AI 编程工具,基于DeepSeek V3快速生成React App
DeepSeek Artifacts是Hugging Face推出的免费AI编程工具,基于DeepSeek V3,支持快速生成React和Tailwind CSS代码,适合快速原型开发和前端组件构建。
434 38
DeepSeek Artifacts:在线实时预览的前端 AI 编程工具,基于DeepSeek V3快速生成React App
|
25天前
|
人工智能 前端开发 程序员
通义灵码 AI 程序员全面上线,能和人类协作完成复杂开发任务
1 月 8 日消息,阿里云通义灵码 AI 程序员已全面上线,成为全球首个同时支持 VS Code、JetBrains IDEs 开发工具的 AI 程序员产品。此次上线的 AI 程序员相比传统 AI 辅助编程工具,能力更全面,可以让开发者以更高效、更沉浸的方式完成编码任务,通过全程对话协作的方式,就能完成从 0 到 1 的业务需求开发、问题修复、单元测试批量生成等复杂编码任务。
315 65
|
7天前
|
人工智能 自然语言处理 语音技术
FilmAgent:多智能体共同协作制作电影,哈工大联合清华推出 AI 驱动的自动化电影制作工具
FilmAgent 是由哈工大与清华联合推出的AI电影自动化制作工具,通过多智能体协作实现从剧本生成到虚拟拍摄的全流程自动化。
85 10
FilmAgent:多智能体共同协作制作电影,哈工大联合清华推出 AI 驱动的自动化电影制作工具
|
27天前
|
人工智能 安全 API
OpenHands:能自主检索外部知识的 AI 编程工具,自动执行命令、网页浏览和生成代码等操作
OpenHands 是一款基于 AI 的编程工具,支持多智能体协作,能够自动生成代码、执行命令、浏览网页等,显著提升开发效率。
137 26
OpenHands:能自主检索外部知识的 AI 编程工具,自动执行命令、网页浏览和生成代码等操作
|
20天前
|
人工智能 资源调度 JavaScript
PPTAgent:中科院开源AI工具,自动将文档转化为高质量PPT
PPTAgent 是中科院推出的自动生成演示文稿框架,基于两阶段编辑方法,支持智能分析、大纲生成、幻灯片生成与评估,适用于教育、企业培训等多种场景。
243 18
PPTAgent:中科院开源AI工具,自动将文档转化为高质量PPT
|
19天前
|
人工智能 开发框架 自然语言处理
Eko:一句话就能快速构建复杂工作流的 AI 代理开发框架!快速实现自动操作电脑和浏览器完成任务
Eko 是 Fellou AI 推出的开源 AI 代理开发框架,支持自然语言驱动,帮助开发者快速构建从简单指令到复杂工作流的智能代理。
211 12
Eko:一句话就能快速构建复杂工作流的 AI 代理开发框架!快速实现自动操作电脑和浏览器完成任务
|
12天前
|
机器学习/深度学习 人工智能 文字识别
Zerox:AI驱动的万能OCR工具,精准识别复杂布局并输出Markdown格式,支持PDF、DOCX、图片等多种文件格式
Zerox 是一款开源的本地化高精度OCR工具,基于GPT-4o-mini模型,支持PDF、DOCX、图片等多种格式文件,能够零样本识别复杂布局文档,输出Markdown格式结果。
63 4
Zerox:AI驱动的万能OCR工具,精准识别复杂布局并输出Markdown格式,支持PDF、DOCX、图片等多种文件格式
|
27天前
|
存储 人工智能 自然语言处理
AI Agent与SaaS工具协同发展的未来:企业智能化的全新范式
AI Agent以自主性和智能化为核心,适合复杂任务的动态执行;而SaaS工具则注重服务的完整性和易用性,适合标准化业务需求。
92 14
AI Agent与SaaS工具协同发展的未来:企业智能化的全新范式
|
9天前
|
人工智能 自然语言处理 JavaScript
微软开源课程!21节课程教你开发生成式 AI 应用所需了解的一切
微软推出的生成式 AI 入门课程,涵盖 21 节课程,帮助开发者快速掌握生成式 AI 应用开发,支持 Python 和 TypeScript 代码示例。
161 14
|
18天前
|
人工智能 Java API
阿里云工程师跟通义灵码结伴编程, 用Spring AI Alibaba来开发 AI 答疑助手
本次分享的主题是阿里云工程师跟通义灵码结伴编程, 用Spring AI Alibaba来开发 AI 答疑助手,由阿里云两位工程师分享。
阿里云工程师跟通义灵码结伴编程, 用Spring AI Alibaba来开发 AI 答疑助手