从零开始:构建你的第一个机器学习模型

本文涉及的产品
云原生数据库 PolarDB 分布式版,标准版 2核8GB
云原生数据库 PolarDB MySQL 版,通用型 2核4GB 50GB
云原生数据库 PolarDB PostgreSQL 版,标准版 2核4GB 50GB
简介: 【7月更文第16天】在机器学习的浩瀚宇宙中,迈出第一步总是充满挑战又激动人心的。本文旨在通过一个简单而经典的案例——线性回归,引领你动手构建首个机器学习模型,让你从零开始,逐步掌握模型构建的基本流程。

在机器学习的浩瀚宇宙中,迈出第一步总是充满挑战又激动人心的。本文旨在通过一个简单而经典的案例——线性回归,引领你动手构建首个机器学习模型,让你从零开始,逐步掌握模型构建的基本流程。

一、理论基础:线性回归简介

线性回归是最基本的机器学习算法之一,用于预测连续值输出。它假设输入特征与输出之间存在线性关系,目标是找到一条直线(或多维空间中的超平面),使得所有数据点到直线的偏差平方和最小。

二、准备工具与数据

我们将使用Python语言,配合两个强大的库:numpy用于数学运算,sklearn(Scikit-learn)来构建和评估模型。

首先,安装必要的库(如果你尚未安装):

pip install numpy scikit-learn

三、实战演练:构建线性回归模型

1. 数据准备

假设我们有一组关于房屋面积与价格的数据,目标是根据房屋面积预测价格。这里为了简化,我们构造一些示例数据。

import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error

# 构造样本数据
np.random.seed(0)
X = np.random.rand(100, 1) * 200  # 房屋面积
y = 50 * X + np.random.randn(100, 1) * 10  # 价格,假设每平方米50元,加入随机噪声

# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

2. 模型训练

接下来,使用LinearRegression类来创建模型,并用训练数据拟合模型。

model = LinearRegression()
model.fit(X_train, y_train)

3. 预测与评估

模型训练完成后,我们可以在测试集上进行预测,并评估模型的表现。

predictions = model.predict(X_test)
mse = mean_squared_error(y_test, predictions)
print(f"Mean Squared Error: {mse:.2f}")

四、拓展:决策树模型

除了线性回归,决策树是另一个直观且易于理解的模型,适用于分类和回归任务。让我们快速构建一个简单的决策树模型,同样以预测房价为例。

from sklearn.tree import DecisionTreeRegressor

# 使用决策树回归模型
tree_model = DecisionTreeRegressor(random_state=42)
tree_model.fit(X_train, y_train.ravel())  # 注意ravel()用于展平一维数组

tree_predictions = tree_model.predict(X_test)
tree_mse = mean_squared_error(y_test, tree_predictions)
print(f"Decision Tree Mean Squared Error: {tree_mse:.2f}")

五、总结

通过以上步骤,你已经成功构建了线性回归和决策树两种模型,完成了机器学习之旅的第一步。这不仅是对理论知识的应用实践,更是理解模型工作原理、评估方法以及优化策略的良好起点。随着系列文章的深入,我们将探索更多复杂的算法、特征工程、调参技巧以及实际应用中的挑战,助你在机器学习的道路上越走越远。

记住,机器学习是一个不断试错、持续学习的过程,享受这段旅程吧!

相关实践学习
基于MSE实现微服务的全链路灰度
通过本场景的实验操作,您将了解并实现在线业务的微服务全链路灰度能力。
目录
相关文章
|
29天前
|
人工智能 JSON 算法
Qwen2.5-Coder 系列模型在 PAI-QuickStart 的训练、评测、压缩及部署实践
阿里云的人工智能平台 PAI,作为一站式、 AI Native 的大模型与 AIGC 工程平台,为开发者和企业客户提供了 Qwen2.5-Coder 系列模型的全链路最佳实践。本文以Qwen2.5-Coder-32B为例,详细介绍在 PAI-QuickStart 完成 Qwen2.5-Coder 的训练、评测和快速部署。
Qwen2.5-Coder 系列模型在 PAI-QuickStart 的训练、评测、压缩及部署实践
|
13天前
|
编解码 机器人 测试技术
技术实践 | 使用 PAI+LLaMA Factory 微调 Qwen2-VL 模型快速搭建专业领域知识问答机器人
Qwen2-VL是一款具备高级图像和视频理解能力的多模态模型,支持多种语言,适用于多模态应用开发。通过PAI和LLaMA Factory框架,用户可以轻松微调Qwen2-VL模型,快速构建文旅领域的知识问答机器人。本教程详细介绍了从模型部署、微调到对话测试的全过程,帮助开发者高效实现定制化多模态应用。
|
1月前
|
机器学习/深度学习 数据采集 数据处理
Scikit-learn Pipeline完全指南:高效构建机器学习工作流
Scikit-learn管道是构建高效、鲁棒、可复用的机器学习工作流程的利器。通过掌握管道的使用,我们可以轻松地完成从数据预处理到模型训练、评估和部署的全流程,极大地提高工作效率。
40 2
Scikit-learn Pipeline完全指南:高效构建机器学习工作流
|
1月前
|
机器学习/深度学习 PyTorch API
优化注意力层提升 Transformer 模型效率:通过改进注意力机制降低机器学习成本
Transformer架构自2017年被Vaswani等人提出以来,凭借其核心的注意力机制,已成为AI领域的重大突破。该机制允许模型根据任务需求灵活聚焦于输入的不同部分,极大地增强了对复杂语言和结构的理解能力。起初主要应用于自然语言处理,Transformer迅速扩展至语音识别、计算机视觉等多领域,展现出强大的跨学科应用潜力。然而,随着模型规模的增长,注意力层的高计算复杂度成为发展瓶颈。为此,本文探讨了在PyTorch生态系统中优化注意力层的各种技术,
64 6
优化注意力层提升 Transformer 模型效率:通过改进注意力机制降低机器学习成本
|
22天前
|
机器学习/深度学习 人工智能 算法
人工智能浪潮下的编程实践:构建你的第一个机器学习模型
在人工智能的巨浪中,每个人都有机会成为弄潮儿。本文将带你一探究竟,从零基础开始,用最易懂的语言和步骤,教你如何构建属于自己的第一个机器学习模型。不需要复杂的数学公式,也不必担心编程难题,只需跟随我们的步伐,一起探索这个充满魔力的AI世界。
39 12
|
29天前
|
机器学习/深度学习 Python
机器学习中评估模型性能的重要工具——混淆矩阵和ROC曲线。混淆矩阵通过真正例、假正例等指标展示模型预测情况
本文介绍了机器学习中评估模型性能的重要工具——混淆矩阵和ROC曲线。混淆矩阵通过真正例、假正例等指标展示模型预测情况,而ROC曲线则通过假正率和真正率评估二分类模型性能。文章还提供了Python中的具体实现示例,展示了如何计算和使用这两种工具来评估模型。
51 8
|
29天前
|
机器学习/深度学习 Python
机器学习中模型选择和优化的关键技术——交叉验证与网格搜索
本文深入探讨了机器学习中模型选择和优化的关键技术——交叉验证与网格搜索。介绍了K折交叉验证、留一交叉验证等方法,以及网格搜索的原理和步骤,展示了如何结合两者在Python中实现模型参数的优化,并强调了使用时需注意的计算成本、过拟合风险等问题。
51 6
|
1月前
|
机器学习/深度学习 数据采集 算法
从零到一:构建高效机器学习模型的旅程####
在探索技术深度与广度的征途中,我深刻体会到技术创新既在于理论的飞跃,更在于实践的积累。本文将通过一个具体案例,分享我在构建高效机器学习模型过程中的实战经验,包括数据预处理、特征工程、模型选择与优化等关键环节,旨在为读者提供一个从零开始构建并优化机器学习模型的实用指南。 ####
|
1月前
|
机器学习/深度学习 数据采集
机器学习入门——使用Scikit-Learn构建分类器
机器学习入门——使用Scikit-Learn构建分类器
|
1月前
|
机器学习/深度学习 人工智能 算法
探索机器学习中的线性回归模型
本文深入探讨了机器学习中广泛使用的线性回归模型,从其基本概念和数学原理出发,逐步引导读者理解模型的构建、训练及评估过程。通过实例分析与代码演示,本文旨在为初学者提供一个清晰的学习路径,帮助他们在实践中更好地应用线性回归模型解决实际问题。