从零到一:构建Python异步编程思维,掌握协程与异步函数

简介: 【7月更文挑战第15天】Python异步编程提升效率,通过协程与异步函数实现并发。从async def定义异步函数,如`say_hello()`,使用`await`等待异步操作。`asyncio.run()`驱动事件循环。并发执行任务,如`asyncio.gather()`同时处理`fetch_data()`任务,降低总体耗时。入门异步编程,解锁高效代码。

在Python编程的世界里,随着网络应用的日益复杂,异步编程成为了一个不可忽视的重要技能。对于初学者而言,掌握异步编程不仅能够提升代码的执行效率,还能更好地理解现代编程的并发与并行概念。本文将从零开始,带你逐步构建Python异步编程的思维,掌握协程与异步函数这一强大工具。

一、理解异步编程的基本概念
首先,我们需要明确什么是异步编程。简单来说,异步编程允许程序在等待某个长时间运行的操作(如网络请求、文件读写)完成时,继续执行其他任务,而不是阻塞在那里等待。这样做可以显著提高程序的响应性和吞吐量。

在Python中,异步编程的核心是协程(Coroutine)和异步函数(Async Functions)。协程是一种用户态的轻量级线程,可以在执行过程中挂起和恢复,而不需要像传统线程那样进行上下文切换。异步函数则是协程的一种高级封装,使用async def定义,内部可以包含await表达式来等待异步操作完成。

二、编写第一个异步函数
让我们从一个简单的异步函数开始:

python
import asyncio

async def say_hello():
print("Hello, asyncio!")

# 模拟异步操作,比如网络请求  
await asyncio.sleep(1)  
print("Finished saying hello")  

注意:异步函数需要使用asyncio的事件循环来运行

async def main():
await say_hello()

运行事件循环

asyncio.run(main())
在这个例子中,say_hello是一个异步函数,它首先打印一条消息,然后模拟一个耗时1秒的异步操作(通过await asyncio.sleep(1)实现)。main函数也是异步的,它调用了say_hello函数。最后,我们使用asyncio.run(main())来运行整个异步程序。

三、并发执行多个异步任务
异步编程的魅力在于能够并发执行多个任务。我们可以通过asyncio.create_task来创建异步任务,并使用asyncio.gather等待它们全部完成:

python
async def fetch_data(url):
print(f'Fetching {url}...')
await asyncio.sleep(1) # 模拟网络请求
return f'Data from {url}'

async def main():
task1 = asyncio.create_task(fetch_data('http://example.com/1'))
task2 = asyncio.create_task(fetch_data('http://example.com/2'))

# 等待所有任务完成,并获取结果  
results = await asyncio.gather(task1, task2)  
print(results)  

asyncio.run(main())
在这个例子中,fetch_data函数模拟了从两个不同URL获取数据的异步操作。main函数中创建了两个异步任务,并使用asyncio.gather等待它们完成。由于这两个任务是并发执行的,所以总耗时接近于单个任务的最长耗时,而不是它们的总和。

四、总结与展望
通过上述示例,我们初步了解了异步编程的基本概念,并掌握了协程与异步函数的使用方法。然而,异步编程的世界远不止于此。在实际开发中,你可能会遇到更复杂的异步编程场景,比如处理异常、使用异步上下文管理器、以及与其他异步库集成等。但只要你掌握了上述基础,相信你会逐渐适应并享受异步编程带来的便利和高效。

最后,希望本文能够为你打开异步编程的大门,让你在Python编程的道路上越走越远。

相关文章
|
1月前
|
API Python
Python 的内建函数
Python 的内置函数列表,方便查询使用方法。
|
1月前
|
数据采集 自然语言处理 搜索推荐
Python内置函数ord()详解
`ord()` 是 Python 中用于将单个字符转换为对应 Unicode 码点的核心函数,支持 ASCII、多语言字符及特殊符号。其返回值为整数(范围 0-1114111),适用于字符编码验证、数据清洗、自定义排序、基础加解密等场景。使用时需注意参数长度必须为 1,否则会触发 `TypeError`。结合 `chr()` 函数可实现双向转换,进阶技巧包括多字节字符处理、编码范围检测及字符分类验证等。
|
3月前
|
人工智能 索引 Python
[oeasy]python091_列表_索引_index_中括号_索引函数
本文介绍了Python中列表与字符串的索引及index函数用法。通过range生成列表,使用索引[]访问和修改列表元素,index函数查找元素位置。字符串支持索引访问但不可直接修改。还探讨了16进制数在Python中的表示方法,以及日期、月份等特殊字符的Unicode范围。最后总结了列表与字符串操作的区别,并预告后续内容,提供蓝桥云课、GitHub和Gitee链接供进一步学习。
86 21
|
3月前
|
Python
[oeasy]python086方法_method_函数_function_区别
本文详细解析了Python中方法(method)与函数(function)的区别。通过回顾列表操作如`append`,以及随机模块的使用,介绍了方法作为类的成员需要通过实例调用的特点。对比内建函数如`print`和`input`,它们无需对象即可直接调用。总结指出方法需基于对象调用且包含`self`参数,而函数独立存在无需`self`。最后提供了学习资源链接,方便进一步探索。
89 17
|
3月前
|
人工智能 Python
[oeasy]python083_类_对象_成员方法_method_函数_function_isinstance
本文介绍了Python中类、对象、成员方法及函数的概念。通过超市商品分类的例子,形象地解释了“类型”的概念,如整型(int)和字符串(str)是两种不同的数据类型。整型对象支持数字求和,字符串对象支持拼接。使用`isinstance`函数可以判断对象是否属于特定类型,例如判断变量是否为整型。此外,还探讨了面向对象编程(OOP)与面向过程编程的区别,并简要介绍了`type`和`help`函数的用法。最后总结指出,不同类型的对象有不同的运算和方法,如字符串有`find`和`index`方法,而整型没有。更多内容可参考文末提供的蓝桥、GitHub和Gitee链接。
77 11
|
3月前
|
开发框架 Java .NET
Python中main函数:代码结构的基石
在Python中,`main`函数是程序结构化和模块化的重要组成部分。它实现了脚本执行与模块导入的分离,避免全局作用域污染并提升代码复用性。其核心作用包括:标准化程序入口、保障模块复用及支持测试驱动开发(TDD)。根据项目复杂度,`main`函数有基础版、函数封装版、参数解析版和类封装版四种典型写法。 与其他语言相比,Python的`main`机制更灵活,支持同一文件作为脚本运行或模块导入。进阶技巧涵盖多文件项目管理、命令行参数处理、环境变量配置及日志集成等。此外,还需注意常见错误如全局变量污染和循环导入,并通过延迟加载、多进程支持和类型提示优化性能。
265 0
|
4月前
|
机器学习/深度学习 设计模式 API
Python 高级编程与实战:构建 RESTful API
本文深入探讨了使用 Python 构建 RESTful API 的方法,涵盖 Flask、Django REST Framework 和 FastAPI 三个主流框架。通过实战项目示例,详细讲解了如何处理 GET、POST 请求,并返回相应数据。学习这些技术将帮助你掌握构建高效、可靠的 Web API。
|
4月前
|
机器学习/深度学习 设计模式 测试技术
Python 高级编程与实战:构建自动化测试框架
本文深入探讨了Python中的自动化测试框架,包括unittest、pytest和nose2,并通过实战项目帮助读者掌握这些技术。文中详细介绍了各框架的基本用法和示例代码,助力开发者快速验证代码正确性,减少手动测试工作量。学习资源推荐包括Python官方文档及Real Python等网站。
|
4月前
|
机器学习/深度学习 设计模式 API
Python 高级编程与实战:构建微服务架构
本文深入探讨了 Python 中的微服务架构,介绍了 Flask、FastAPI 和 Nameko 三个常用框架,并通过实战项目帮助读者掌握这些技术。每个框架都提供了构建微服务的示例代码,包括简单的 API 接口实现。通过学习本文,读者将能够使用 Python 构建高效、独立的微服务。
|
4月前
|
消息中间件 分布式计算 并行计算
Python 高级编程与实战:构建分布式系统
本文深入探讨了 Python 中的分布式系统,介绍了 ZeroMQ、Celery 和 Dask 等工具的使用方法,并通过实战项目帮助读者掌握这些技术。ZeroMQ 是高性能异步消息库,支持多种通信模式;Celery 是分布式任务队列,支持异步任务执行;Dask 是并行计算库,适用于大规模数据处理。文章结合具体代码示例,帮助读者理解如何使用这些工具构建分布式系统。

热门文章

最新文章

推荐镜像

更多