Transformers 4.37 中文文档(五十)(5)https://developer.aliyun.com/article/1565253
TFPegasusModel
class transformers.TFPegasusModel
( config: PegasusConfig *inputs **kwargs )
参数
config
(PegasusConfig)- 包含模型所有参数的模型配置类。使用配置文件初始化不会加载与模型关联的权重,只会加载配置。查看 from_pretrained()方法以加载模型权重。
PEGASUS 模型裸输出原始隐藏状态,没有任何特定的头部。这个模型继承自 TFPreTrainedModel。查看超类文档以了解库为所有模型实现的通用方法(如下载或保存、调整输入嵌入、修剪头等)。
这个模型也是一个tf.keras.Model子类。将其用作常规的 TF 2.0 Keras 模型,并参考 TF 2.0 文档以获取与一般用法和行为相关的所有内容。
transformers
中的 TensorFlow 模型和层接受两种格式的输入:
- 将所有输入作为关键字参数(如 PyTorch 模型),或
- 将所有输入作为列表、元组或字典的第一个位置参数。
支持第二种格式的原因是 Keras 方法在将输入传递给模型和层时更喜欢这种格式。由于有了这种支持,当使用model.fit()
等方法时,应该可以“正常工作” - 只需传递您的输入和标签,以任何model.fit()
支持的格式!但是,如果您想在 Keras 方法之外使用第二种格式,比如在使用 KerasFunctional
API 创建自己的层或模型时,有三种可能性可以用来收集所有输入张量作为第一个位置参数:
- 仅包含
input_ids
的单个张量,没有其他内容:model(input_ids)
- 包含一个或多个输入张量的长度可变的列表,按照文档字符串中给定的顺序:
model([input_ids, attention_mask])
或model([input_ids, attention_mask, token_type_ids])
- 一个字典,其中包含与文档字符串中给定的输入名称相关联的一个或多个输入张量:
model({"input_ids": input_ids, "token_type_ids": token_type_ids})
请注意,当使用子类化创建模型和层时,您不需要担心这些,因为您可以像对待其他 Python 函数一样传递输入!
call
( input_ids: TFModelInputType | None = None attention_mask: np.ndarray | tf.Tensor | None = None decoder_input_ids: np.ndarray | tf.Tensor | None = None decoder_attention_mask: np.ndarray | tf.Tensor | None = None decoder_position_ids: np.ndarray | tf.Tensor | None = None head_mask: np.ndarray | tf.Tensor | None = None decoder_head_mask: np.ndarray | tf.Tensor | None = None cross_attn_head_mask: np.ndarray | tf.Tensor | None = None encoder_outputs: Optional[Union[Tuple, TFBaseModelOutput]] = None past_key_values: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None inputs_embeds: np.ndarray | tf.Tensor | None = None decoder_inputs_embeds: np.ndarray | tf.Tensor | None = None use_cache: Optional[bool] = None output_attentions: Optional[bool] = None output_hidden_states: Optional[bool] = None return_dict: Optional[bool] = None training: bool = False **kwargs ) → export const metadata = 'undefined';transformers.modeling_tf_outputs.TFSeq2SeqModelOutput or tuple(tf.Tensor)
参数
input_ids
(tf.Tensor
of shape(batch_size, sequence_length)
) — 词汇表中输入序列标记的索引。
可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode()和 PreTrainedTokenizer.call
()。
什么是输入 ID?attention_mask
(tf.Tensor
of shape(batch_size, sequence_length)
, optional) — 避免对填充标记索引执行注意力的掩码。掩码值选定在[0, 1]
之间:
- 1 表示标记
未被掩码
, - 0 表示标记
被掩码
。
- 什么是注意力掩码?
decoder_input_ids
(tf.Tensor
of shape(batch_size, target_sequence_length)
, optional) — 词汇表中解码器输入序列标记的索引。
可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode()和 PreTrainedTokenizer.call
()。
什么是解码器输入 ID?
Pegasus 使用pad_token_id
作为decoder_input_ids
生成的起始标记。如果使用past_key_values
,可以选择仅输入最后的decoder_input_ids
(参见past_key_values
)。decoder_attention_mask
(tf.Tensor
of shape(batch_size, target_sequence_length)
, optional) — 将默认生成并忽略填充标记。不建议在大多数情况下设置此项。decoder_position_ids
(tf.Tensor
of shape(batch_size, sequence_length)
, optional) — 每个解码器输入序列标记在位置嵌入中的位置索引。选定范围为[0, config.max_position_embeddings - 1]
。head_mask
(tf.Tensor
of shape(encoder_layers, encoder_attention_heads)
, optional) — 编码器中用于使注意力模块中的特定头部失效的掩码。掩码值选定在[0, 1]
之间:
- 1 表示头部
未被掩码
, - 0 表示头部
被掩码
。
decoder_head_mask
(tf.Tensor
of shape(decoder_layers, decoder_attention_heads)
, optional) — 解码器中用于使注意力模块中的特定头部失效的掩码。掩码值选定在[0, 1]
之间:
- 1 表示头部
未被掩码
, - 0 表示头部
被掩码
。
cross_attn_head_mask
(tf.Tensor
of shape(decoder_layers, decoder_attention_heads)
, optional) — 交叉注意力模块中选定头部失效的掩码。掩码值选定在[0, 1]
之间:
- 1 表示头部
未被掩码
, - 0 表示头部
被掩码
。
encoder_outputs
(tf.FloatTensor
, optional) — 编码器最后一层的隐藏状态输出。在解码器的交叉注意力中使用。形状为(batch_size, sequence_length, hidden_size)
的序列是past_key_values
(Tuple[Tuple[tf.Tensor]]
of lengthconfig.n_layers
) — 包含注意力块的预计算键和值隐藏状态。可用于加速解码。如果使用past_key_values
,用户可以选择仅输入最后的decoder_input_ids
(即没有将其过去键值状态提供给此模型的那些)形状为(batch_size, 1)
,而不是所有decoder_input_ids
的形状为(batch_size, sequence_length)
。inputs_embeds
(tf.Tensor
of shape(batch_size, sequence_length, hidden_size)
, optional) — 可选地,您可以选择直接传递嵌入表示,而不是传递input_ids
。如果您想要更多控制权来将input_ids
索引转换为相关向量,而不是使用模型的内部嵌入查找矩阵,这将非常有用。use_cache
(bool
, optional, 默认为True
) — 如果设置为True
,将返回past_key_values
键值状态,并可用于加速解码(参见past_key_values
)。在训练期间设置为False
,在生成期间设置为True
。output_attentions (bool
, optional): 是否返回所有注意力层的注意力张量。有关更多详细信息,请参见返回张量下的attentions
。此参数仅在急切模式下使用,在图模式下将使用配置中的值。output_attentions
(bool
, optional) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参见返回张量下的attentions
。此参数仅在急切模式下使用,在图模式下将使用配置中的值。output_hidden_states
(bool
, optional) — 是否返回所有层的隐藏状态。有关更多详细信息,请参见返回张量下的hidden_states
。此参数仅在急切模式下使用,在图模式下将使用配置中的值。return_dict
(bool
, optional) — 是否返回 ModelOutput 而不是普通元组。此参数可在急切模式下使用,在图模式下该值将始终设置为 True。training
(bool
, optional, 默认为False
) — 是否在训练模式下使用模型(一些模块,如 dropout 模块,在训练和评估之间具有不同的行为)。
返回
transformers.modeling_tf_outputs.TFSeq2SeqModelOutput 或者tuple(tf.Tensor)
一个 transformers.modeling_tf_outputs.TFSeq2SeqModelOutput 或者一个tf.Tensor
元组(如果传递return_dict=False
或者config.return_dict=False
)包含根据配置(PegasusConfig)和输入的不同元素。
last_hidden_state
(tf.Tensor
of shape(batch_size, sequence_length, hidden_size)
) — 模型解码器最后一层的输出的隐藏状态序列。
如果仅使用past_key_values
,则输出形状为(batch_size, 1, hidden_size)
的序列的最后一个隐藏状态。past_key_values
(List[tf.Tensor]
, optional, 当传递use_cache=True
或者config.use_cache=True
时返回) — 长度为config.n_layers
的tf.Tensor
列表,每个张量的形状为(2, batch_size, num_heads, sequence_length, embed_size_per_head)
。
包含解码器的预计算隐藏状态(注意力块中的键和值),可以用于加速顺序解码(参见past_key_values
输入)。decoder_hidden_states
(tuple(tf.Tensor)
, optional, 当传递output_hidden_states=True
或者config.output_hidden_states=True
时返回) — 形状为(batch_size, sequence_length, hidden_size)
的tf.Tensor
元组(一个用于嵌入的输出 + 一个用于每个层的输出)。
解码器每层的隐藏状态加上初始嵌入输出。decoder_attentions
(tuple(tf.Tensor)
, optional, 当传递output_attentions=True
或者config.output_attentions=True
时返回) — 形状为(batch_size, num_heads, sequence_length, sequence_length)
的tf.Tensor
元组(每个层一个)。
解码器的注意力权重,在注意力 softmax 之后,用于计算自注意力头中的加权平均值。cross_attentions
(tuple(tf.Tensor)
,可选,当传递output_attentions=True
或config.output_attentions=True
时返回) - 形状为(batch_size, num_heads, sequence_length, sequence_length)
的tf.Tensor
元组(每层一个)。
解码器的交叉注意力层的注意力权重,在注意力 softmax 之后,用于计算交叉注意力头中的加权平均值。encoder_last_hidden_state
(形状为(batch_size, sequence_length, hidden_size)
的tf.Tensor
,可选) - 模型编码器最后一层的隐藏状态序列。encoder_hidden_states
(tuple(tf.Tensor)
,可选,当传递output_hidden_states=True
或config.output_hidden_states=True
时返回) - 形状为(batch_size, sequence_length, hidden_size)
的tf.Tensor
元组(一个用于嵌入输出,一个用于每一层的输出)。
编码器在每一层的隐藏状态加上初始嵌入输出。encoder_attentions
(tuple(tf.Tensor)
,可选,当传递output_attentions=True
或config.output_attentions=True
时返回) - 形状为(batch_size, num_heads, sequence_length, sequence_length)
的tf.Tensor
元组(每层一个)。
编码器的注意力权重,在注意力 softmax 之后,用于计算自注意力头中的加权平均值。
TFPegasusModel 的前向方法,覆盖了__call__
特殊方法。
虽然前向传递的方法需要在此函数内定义,但应该在此之后调用Module
实例,而不是这个,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。
示例:
>>> from transformers import AutoTokenizer, TFPegasusModel >>> import tensorflow as tf >>> tokenizer = AutoTokenizer.from_pretrained("google/pegasus-large") >>> model = TFPegasusModel.from_pretrained("google/pegasus-large") >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="tf") >>> outputs = model(inputs) >>> last_hidden_states = outputs.last_hidden_state
TFPegasusForConditionalGeneration
class transformers.TFPegasusForConditionalGeneration
( config *inputs **kwargs )
参数
config
(PegasusConfig) - 具有模型所有参数的模型配置类。使用配置文件初始化不会加载与模型关联的权重,只加载配置。查看 from_pretrained()方法以加载模型权重。
带有语言建模头的 PEGASUS 模型。可用于摘要。此模型继承自 TFPreTrainedModel。查看超类文档以了解库为所有模型实现的通用方法(如下载或保存、调整输入嵌入、修剪头等)。
此模型也是tf.keras.Model的子类。将其用作常规的 TF 2.0 Keras 模型,并参考 TF 2.0 文档以获取有关一般用法和行为的所有相关信息。
TensorFlow 模型和transformers
中的层接受两种格式作为输入:
- 将所有输入作为关键字参数(类似于 PyTorch 模型),或
- 将所有输入作为列表、元组或字典放在第一个位置参数中。
支持第二种格式的原因是 Keras 方法在将输入传递给模型和层时更喜欢这种格式。由于有这种支持,当使用model.fit()
等方法时,您应该可以“轻松使用” - 只需以model.fit()
支持的任何格式传递输入和标签!但是,如果您想在 Keras 方法之外使用第二种格式,比如在使用 KerasFunctional
API 创建自己的层或模型时,有三种可能性可以用来收集所有输入张量作为第一个位置参数:
- 只有
input_ids
的单个张量,没有其他内容:model(input_ids)
- 一个长度可变的列表,其中包含一个或多个按照文档字符串中给定的顺序的输入张量:
model([input_ids, attention_mask])
或model([input_ids, attention_mask, token_type_ids])
- 一个字典,其中包含一个或多个与文档字符串中给定的输入名称相关联的输入张量:
model({"input_ids": input_ids, "token_type_ids": token_type_ids})
请注意,当使用子类化创建模型和层时,您无需担心这些问题,因为您可以像对待任何其他 Python 函数一样传递输入!
call
( input_ids: TFModelInputType | None = None attention_mask: np.ndarray | tf.Tensor | None = None decoder_input_ids: np.ndarray | tf.Tensor | None = None decoder_attention_mask: np.ndarray | tf.Tensor | None = None decoder_position_ids: np.ndarray | tf.Tensor | None = None head_mask: np.ndarray | tf.Tensor | None = None decoder_head_mask: np.ndarray | tf.Tensor | None = None cross_attn_head_mask: np.ndarray | tf.Tensor | None = None encoder_outputs: Optional[TFBaseModelOutput] = None past_key_values: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None inputs_embeds: np.ndarray | tf.Tensor | None = None decoder_inputs_embeds: np.ndarray | tf.Tensor | None = None use_cache: Optional[bool] = None output_attentions: Optional[bool] = None output_hidden_states: Optional[bool] = None return_dict: Optional[bool] = None labels: np.ndarray | tf.Tensor | None = None training: bool = False ) → export const metadata = 'undefined';transformers.modeling_tf_outputs.TFSeq2SeqLMOutput or tuple(tf.Tensor)
参数
input_ids
(形状为({0})
的tf.Tensor
)— 输入序列标记在词汇表中的索引。
可以使用 AutoTokenizer 来获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode()和 PreTrainedTokenizer.call
()。
输入 ID 是什么?attention_mask
(形状为({0})
的tf.Tensor
,可选)— 用于避免在填充标记索引上执行注意力的掩码。掩码值选定在[0, 1]
之间:
- 对于未被
masked
的标记为 1, - 对于被
masked
的标记为 0。
- 注意力掩码是什么?
decoder_input_ids
(形状为(batch_size, target_sequence_length)
的tf.Tensor
,可选)— 解码器输入序列标记在词汇表中的索引。
可以使用 AutoTokenizer 来获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode()和 PreTrainedTokenizer.call
()。
解码器输入 ID 是什么?
Pegasus 使用pad_token_id
作为decoder_input_ids
生成的起始标记。如果使用了past_key_values
,则只需输入最后的decoder_input_ids
(参见past_key_values
)。decoder_attention_mask
(形状为(batch_size, target_sequence_length)
的tf.Tensor
,可选)— 默认情况下将生成并忽略填充标记。不建议为大多数用例设置此选项。decoder_position_ids
(形状为(batch_size, sequence_length)
的tf.Tensor
,可选)— 每个解码器输入序列标记在位置嵌入中的位置索引。选定范围为[0, config.max_position_embeddings - 1]
。head_mask
(形状为(encoder_layers, encoder_attention_heads)
的tf.Tensor
,可选)— 用于将编码器中注意力模块的选定头部置零的掩码。掩码值选定在[0, 1]
之间:
- 对于未被
masked
的头部为 1。 - 对于被
masked
的头部为 0。
decoder_head_mask
(形状为(decoder_layers, decoder_attention_heads)
的tf.Tensor
,可选)- 用于在解码器中的注意力模块中使选定头部失效的掩码。掩码值选择在[0, 1]
中:
- 1 表示头部未被“掩盖”,
- 0 表示头部被“掩盖”。
cross_attn_head_mask
(形状为(decoder_layers, decoder_attention_heads)
的tf.Tensor
,可选)- 用于使交叉注意力模块中选定头部失效的掩码。掩码值选择在[0, 1]
中:
- 1 表示头部未被“掩盖”,
- 0 表示头部被“掩盖”。
encoder_outputs
(tf.FloatTensor
,可选)- 编码器最后一层的输出的隐藏状态。用于解码器的交叉注意力。形状为(batch_size, sequence_length, hidden_size)
是一个序列past_key_values
(长度为config.n_layers
的Tuple[Tuple[tf.Tensor]]
)- 包含注意力块的预计算键和值隐藏状态。可用于加速解码。如果使用了past_key_values
,用户可以选择仅输入最后一个decoder_input_ids
(那些没有将它们的过去键值状态提供给此模型的)的形状为(batch_size, 1)
,而不是形状为(batch_size, sequence_length)
的所有decoder_input_ids
。inputs_embeds
(形状为(batch_size, sequence_length, hidden_size)
的tf.Tensor
,可选)- 可选地,可以选择直接传递嵌入表示,而不是传递input_ids
。如果您希望更多地控制如何将input_ids
索引转换为相关向量,而不是模型的内部嵌入查找矩阵,则这很有用。use_cache
(bool
,可选,默认为True
)- 如果设置为True
,将返回past_key_values
键值状态,并可用于加速解码(参见past_key_values
)。在训练期间设置为False
,在生成输出期间设置为True
。output_attentions
(bool
,可选)- 是否返回所有注意力层的注意力张量。有关更多详细信息,请参见返回张量下的attentions
。此参数仅可在急切模式中使用,在图模式中,将使用配置中的值。output_hidden_states
(bool
,可选)- 是否返回所有层的隐藏状态。有关更多详细信息,请参见返回张量下的hidden_states
。此参数仅可在急切模式中使用,在图模式中,将使用配置中的值。return_dict
(bool
,可选)- 是否返回 ModelOutput 而不是普通元组。此参数仅可在急切模式中使用,在图模式中,该值将始终设置为 True。training
(bool
,可选,默认为False
)- 是否在训练模式中使用模型(某些模块,如丢弃模块,在训练和评估之间具有不同的行为)。labels
(形状为(batch_size, sequence_length)
的tf.tensor
,可选)- 用于计算掩盖语言建模损失的标签。索引应该在[0, ..., config.vocab_size]
或-100(参见input_ids
文档字符串)。索引设置为-100
的标记将被忽略(掩盖),损失仅计算具有标签在[0, ..., config.vocab_size]
中的标记。
返回
transformers.modeling_tf_outputs.TFSeq2SeqLMOutput 或tuple(tf.Tensor)
一个 transformers.modeling_tf_outputs.TFSeq2SeqLMOutput 或一个tf.Tensor
元组(如果传递return_dict=False
或config.return_dict=False
)包括根据配置(PegasusConfig)和输入不同元素。
损失
(形状为(n,)
的tf.Tensor
,可选,当提供标签
时返回,其中 n 是非掩码标签的数量)— 语言建模损失。logits
(形状为(batch_size, sequence_length, config.vocab_size)
的tf.Tensor
)— 语言建模头的预测分数(SoftMax 之前每个词汇标记的分数)。past_key_values
(List[tf.Tensor]
,可选,当传递use_cache=True
或config.use_cache=True
时返回)— 长度为config.n_layers
的tf.Tensor
列表,每个张量的形状为(2, batch_size, num_heads, sequence_length, embed_size_per_head)
。
包含预先计算的解码器隐藏状态(注意力块中的键和值),可用于加速顺序解码(参见past_key_values
输入)。decoder_hidden_states
(tuple(tf.Tensor)
,可选,当传递output_hidden_states=True
或config.output_hidden_states=True
时返回)— 形状为(batch_size, sequence_length, hidden_size)
的tf.Tensor
元组(一个用于嵌入的输出 + 一个用于每一层的输出)。
解码器在每一层输出的隐藏状态加上初始嵌入输出。decoder_attentions
(tuple(tf.Tensor)
,可选,当传递output_attentions=True
或config.output_attentions=True
时返回)— 形状为(batch_size, num_heads, sequence_length, sequence_length)
的tf.Tensor
元组(每层一个)。
解码器的注意力权重,在注意力 SoftMax 之后,用于计算自注意力头中的加权平均值。cross_attentions
(tuple(tf.Tensor)
,可选,当传递output_attentions=True
或config.output_attentions=True
时返回)— 形状为(batch_size, num_heads, sequence_length, sequence_length)
的tf.Tensor
元组(每层一个)。
解码器的交叉注意力层的注意力权重,在注意力 SoftMax 之后,用于计算交叉注意力头中的加权平均值。encoder_last_hidden_state
(形状为(batch_size, sequence_length, hidden_size)
的tf.Tensor
,可选)— 模型编码器最后一层的隐藏状态序列。encoder_hidden_states
(tuple(tf.Tensor)
,可选,当传递output_hidden_states=True
或config.output_hidden_states=True
时返回)— 形状为(batch_size, sequence_length, hidden_size)
的tf.Tensor
元组(一个用于嵌入的输出 + 一个用于每一层的输出)。
编码器在每一层输出的隐藏状态加上初始嵌入输出。encoder_attentions
(tuple(tf.Tensor)
,可选,当传递output_attentions=True
或config.output_attentions=True
时返回)— 形状为(batch_size, num_heads, sequence_length, sequence_length)
的tf.Tensor
元组(每层一个)。
编码器的注意力权重,在注意力 SoftMax 之后,用于计算自注意力头中的加权平均值。
TFPegasusForConditionalGeneration 的前向方法,覆盖了__call__
特殊方法。
虽然前向传递的步骤需要在此函数内定义,但应该在此之后调用Module
实例,而不是在此处调用,因为前者会处理运行前后处理步骤,而后者会默默地忽略它们。
摘要示例:
>>> from transformers import AutoTokenizer, TFPegasusForConditionalGeneration >>> model = TFPegasusForConditionalGeneration.from_pretrained("google/pegasus-xsum") >>> tokenizer = AutoTokenizer.from_pretrained("google/pegasus-xsum") >>> ARTICLE_TO_SUMMARIZE = ( ... "PG&E stated it scheduled the blackouts in response to forecasts for high winds " ... "amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were " ... "scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow." ... ) >>> inputs = tokenizer(ARTICLE_TO_SUMMARIZE, max_length=1024, return_tensors="tf") >>> # Generate Summary >>> summary_ids = model.generate(input_ids) >>> print(tokenizer.batch_decode(summary_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False))
JAXHide JAX 内容
Transformers 4.37 中文文档(五十)(7)https://developer.aliyun.com/article/1565256