Transformers 4.37 中文文档(八十)(5)

简介: Transformers 4.37 中文文档(八十)

Transformers 4.37 中文文档(八十)(4)https://developer.aliyun.com/article/1563216


WavLMForCTC

class transformers.WavLMForCTC

< source >

( config target_lang: Optional = None )

参数

  • config (WavLMConfig) — 具有模型所有参数的模型配置类。使用配置文件初始化不会加载与模型相关的权重,只会加载配置。查看 from_pretrained() 方法以加载模型权重。

WavLM 模型在 Connectionist Temporal Classification (CTC) 上具有 语言建模 头部。WavLM 是由 Sanyuan Chen, Chengyi Wang, Zhengyang Chen, Yu Wu, Shujie  Liu, Zhuo Chen, Jinyu Li, Naoyuki Kanda, Takuya Yoshioka, Xiong Xiao,  Jian Wu, Long Zhou, Shuo Ren, Yanmin Qian, Yao Qian, Jian Wu, Michael  Zeng, Xiangzhan Yu, Furu Wei 在 WavLM: Unified Speech Representation Learning with Labeled and Unlabeled Data 中提出的。

此模型继承自 PreTrainedModel。检查超类文档以获取库为其所有模型实现的通用方法(例如下载或保存等)。

此模型是 PyTorch torch.nn.Module 的子类。将其用作常规 PyTorch 模块,并参考 PyTorch 文档以获取有关一般用法和行为的所有相关信息。

forward

< source >

( input_values: Optional attention_mask: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None labels: Optional = None ) → export const metadata = 'undefined';transformers.modeling_outputs.CausalLMOutput or tuple(torch.FloatTensor)

参数

  • input_values (torch.FloatTensor,形状为 (batch_size, sequence_length)) — 输入原始语音波形的浮点值。值可以通过将 .flac.wav 音频文件加载到类型为 List[float]numpy.ndarray 的数组中获得,例如通过 soundfile 库(pip install soundfile)。要准备好数组以获得 input_values,应使用 AutoProcessor 进行填充和转换为类型为 torch.FloatTensor 的张量。有关详细信息,请参阅 Wav2Vec2Processor.call()。
  • attention_mask (torch.LongTensor,形状为 (batch_size, sequence_length)可选) — 用于避免在填充标记索引上执行卷积和注意力的掩码。选择在 [0, 1] 中的掩码值。
  • 对于未被 masked 的标记为 1,
  • 对于被 masked 的标记为 0。
  • 什么是注意力掩码?
    attention_mask 只有在相应的处理器具有 config.return_attention_mask == True 时才应传递。对于所有处理器的 config.return_attention_mask == False 的模型,当进行批量推理时,应 传递 attention_mask 以避免性能下降。对于这种模型,input_values 应该简单地用 0 填充并在不传递 attention_mask 的情况下传递。请注意,这些模型根据 input_values 是否填充而产生略有不同的结果。
  • output_attentions (bool, 可选) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参阅返回张量下的 attentions
  • output_hidden_states (bool, 可选) — 是否返回所有层的隐藏状态。有关更多详细信息,请参阅返回张量下的 hidden_states
  • return_dictbool可选)— 是否返回 ModelOutput 而不是普通元组。
  • labels(形状为(batch_size, target_length)torch.LongTensor可选)— 用于连接主义时间分类的标签。请注意,target_length必须小于或等于输出 logits 的序列长度。索引在[-100, 0, ..., config.vocab_size - 1]中选择。所有设置为-100的标签都被忽略(掩码),损失仅计算在[0, ..., config.vocab_size - 1]中的标签。

返回

transformers.modeling_outputs.CausalLMOutput 或tuple(torch.FloatTensor)

一个 transformers.modeling_outputs.CausalLMOutput 或一个torch.FloatTensor元组(如果传递return_dict=Falseconfig.return_dict=False,则根据配置(WavLMConfig)和输入包含各种元素。

  • loss(形状为(1,)torch.FloatTensor可选,当提供labels时返回)— 语言建模损失(用于下一个标记预测)。
  • logits(形状为(batch_size, sequence_length, config.vocab_size)torch.FloatTensor)— 语言建模头的预测分数(SoftMax 之前每个词汇标记的分数)。
  • hidden_statestuple(torch.FloatTensor)可选,当传递output_hidden_states=Trueconfig.output_hidden_states=True时返回)— 形状为(batch_size, sequence_length, hidden_size)torch.FloatTensor元组(一个用于嵌入的输出,如果模型有一个嵌入层,+ 一个用于每一层的输出)。
    每层模型输出的隐藏状态加上可选的初始嵌入输出。
  • attentionstuple(torch.FloatTensor)可选,当传递output_attentions=Trueconfig.output_attentions=True时返回)— 形状为(batch_size, num_heads, sequence_length, sequence_length)torch.FloatTensor元组(每层一个)。
    注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。

WavLMForCTC 前向方法,覆盖__call__特殊方法。

尽管前向传递的配方需要在此函数内定义,但应该在此之后调用Module实例,而不是在此之后调用,因为前者负责运行预处理和后处理步骤,而后者则会默默地忽略它们。

示例:

>>> from transformers import AutoProcessor, WavLMForCTC
>>> from datasets import load_dataset
>>> import torch
>>> dataset = load_dataset("hf-internal-testing/librispeech_asr_demo", "clean", split="validation")
>>> dataset = dataset.sort("id")
>>> sampling_rate = dataset.features["audio"].sampling_rate
>>> processor = AutoProcessor.from_pretrained("patrickvonplaten/wavlm-libri-clean-100h-base-plus")
>>> model = WavLMForCTC.from_pretrained("patrickvonplaten/wavlm-libri-clean-100h-base-plus")
>>> # audio file is decoded on the fly
>>> inputs = processor(dataset[0]["audio"]["array"], sampling_rate=sampling_rate, return_tensors="pt")
>>> with torch.no_grad():
...     logits = model(**inputs).logits
>>> predicted_ids = torch.argmax(logits, dim=-1)
>>> # transcribe speech
>>> transcription = processor.batch_decode(predicted_ids)
>>> transcription[0]
'mister quilter is the aposle of the middle classes and we are glad to welcome his gospel'
>>> inputs["labels"] = processor(text=dataset[0]["text"], return_tensors="pt").input_ids
>>> # compute loss
>>> loss = model(**inputs).loss
>>> round(loss.item(), 2)
12.51

WavLMForSequenceClassification

class transformers.WavLMForSequenceClassification

<来源>

( config )

参数

  • config(WavLMConfig)— 具有模型所有参数的模型配置类。使用配置文件初始化不会加载与模型关联的权重,只会加载配置。查看 from_pretrained()方法以加载模型权重。

WavLM 模型在顶部具有一个序列分类头(一个线性层在池化输出上方)用于类似 SUPERB 关键词检测的任务。

WavLM 是由 Sanyuan Chen、Chengyi Wang、Zhengyang Chen、Yu Wu、Shujie  Liu、Zhuo Chen、Jinyu Li、Naoyuki Kanda、Takuya Yoshioka、Xiong Xiao、Jian  Wu、Long Zhou、Shuo Ren、Yanmin Qian、Yao Qian、Jian Wu、Michael  Zeng、Xiangzhan Yu、Furu Wei 在《WavLM: Unified Speech Representation Learning with Labeled and Unlabeled Data》中提出的。

这个模型继承自 PreTrainedModel。查看超类文档以了解库实现的所有模型的通用方法(如下载或保存等)。

这个模型是 PyTorch 的torch.nn.Module子类。将其用作常规的 PyTorch 模块,并参考 PyTorch 文档以了解所有与一般用法和行为相关的事项。

forward

< source >

( input_values: Optional attention_mask: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None labels: Optional = None ) → export const metadata = 'undefined';transformers.modeling_outputs.SequenceClassifierOutput or tuple(torch.FloatTensor)

参数

  • input_values (torch.FloatTensor,形状为(batch_size, sequence_length)) — 输入原始语音波形的浮点值。值可以通过将.flac.wav音频文件加载到List[float]类型的数组或numpy.ndarray中获得,例如通过声音文件库(pip install soundfile)。为了准备数组为input_values,应使用 AutoProcessor 进行填充和转换为torch.FloatTensor类型的张量。有关详细信息,请参阅 Wav2Vec2Processor.call()。
  • attention_mask (torch.LongTensor,形状为(batch_size, sequence_length)可选) — 用于避免在填充标记索引上执行卷积和注意力的掩码。掩码值选在[0, 1]之间:
  • 对于未被masked的标记为 1。
  • 对于被masked的标记为 0。
  • 什么是注意力掩码?
    只有当相应的处理器具有config.return_attention_mask == True时,才应传递attention_mask。对于所有处理器具有config.return_attention_mask == False的模型,当进行批量推断时,应避免传递attention_mask以避免性能下降。对于这些模型,input_values应简单地用 0 填充并在不带attention_mask的情况下传递。请注意,这些模型根据input_values是否填充会产生略有不同的结果。
  • output_attentions (bool, 可选) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参阅返回的张量下的attentions
  • output_hidden_states (bool, 可选) — 是否返回所有层的隐藏状态。有关更多详细信息,请参阅返回的张量下的hidden_states
  • return_dict (bool, 可选) — 是否返回 ModelOutput 而不是普通元组。
  • labels (torch.LongTensor,形状为(batch_size,)可选) — 用于计算序列分类/回归损失的标签。索引应在[0, ..., config.num_labels - 1]范围内。如果config.num_labels == 1,则计算回归损失(均方损失),如果config.num_labels > 1,则计算分类损失(交叉熵)。

返回

transformers.modeling_outputs.SequenceClassifierOutput 或 tuple(torch.FloatTensor)

一个 transformers.modeling_outputs.SequenceClassifierOutput 或一个torch.FloatTensor元组(如果传递了return_dict=False或当config.return_dict=False时)包含根据配置(WavLMConfig)和输入的不同元素。

  • loss (torch.FloatTensor,形状为(1,)可选,当提供labels时返回) — 分类(如果 config.num_labels==1 则为回归)损失。
  • logits (torch.FloatTensor,形状为(batch_size, config.num_labels)) — 分类(如果 config.num_labels==1 则为回归)得分(SoftMax 之前)。
  • hidden_statestuple(torch.FloatTensor)可选,当传递output_hidden_states=Trueconfig.output_hidden_states=True时返回)-形状为(batch_size, sequence_length, hidden_size)torch.FloatTensor元组(如果模型有嵌入层,则为嵌入的输出+每层的输出)。
    模型在每一层输出的隐藏状态以及可选的初始嵌入输出。
  • attentionstuple(torch.FloatTensor)可选,当传递output_attentions=Trueconfig.output_attentions=True时返回)-形状为(batch_size, num_heads, sequence_length, sequence_length)torch.FloatTensor元组(每层一个)。
    在自注意力头中用于计算加权平均值的注意力 softmax 后的注意力权重。

WavLMForSequenceClassification 的前向方法,覆盖__call__特殊方法。

虽然前向传递的步骤需要在此函数内定义,但应在此之后调用Module实例,而不是在此处调用,因为前者会处理运行前后处理步骤,而后者会默默地忽略它们。

示例:

>>> from transformers import AutoFeatureExtractor, WavLMForSequenceClassification
>>> from datasets import load_dataset
>>> import torch
>>> dataset = load_dataset("hf-internal-testing/librispeech_asr_demo", "clean", split="validation")
>>> dataset = dataset.sort("id")
>>> sampling_rate = dataset.features["audio"].sampling_rate
>>> feature_extractor = AutoFeatureExtractor.from_pretrained("patrickvonplaten/wavlm-libri-clean-100h-base-plus")
>>> model = WavLMForSequenceClassification.from_pretrained("patrickvonplaten/wavlm-libri-clean-100h-base-plus")
>>> # audio file is decoded on the fly
>>> inputs = feature_extractor(dataset[0]["audio"]["array"], sampling_rate=sampling_rate, return_tensors="pt")
>>> with torch.no_grad():
...     logits = model(**inputs).logits
>>> predicted_class_ids = torch.argmax(logits, dim=-1).item()
>>> predicted_label = model.config.id2label[predicted_class_ids]
>>> # compute loss - target_label is e.g. "down"
>>> target_label = model.config.id2label[0]
>>> inputs["labels"] = torch.tensor([model.config.label2id[target_label]])
>>> loss = model(**inputs).loss

WavLMForAudioFrameClassification

class transformers.WavLMForAudioFrameClassification

<来源>

( config )

参数

  • config(WavLMConfig](/docs/transformers/v4.37.2/en/main_classes/model#transformers.PreTrainedModel.from_pretrained)方法以加载模型权重。

WavLM 模型在顶部带有帧分类头,用于说话人分离等任务。

WavLM 是由 Sanyuan Chen、Chengyi Wang、Zhengyang Chen、Yu Wu、Shujie  Liu、Zhuo Chen、Jinyu Li、Naoyuki Kanda、Takuya Yoshioka、Xiong Xiao、Jian  Wu、Long Zhou、Shuo Ren、Yanmin Qian、Yao Qian、Jian Wu、Michael  Zeng、Xiangzhan Yu、Furu Wei 在《WavLM: 统一的带标记和未标记数据的语音表示学习》中提出的。

此模型继承自 PreTrainedModel。查看超类文档以了解库为所有模型实现的通用方法(如下载或保存等)。

此模型是 PyTorch torch.nn.Module子类。将其用作常规 PyTorch 模块,并参考 PyTorch 文档以获取有关一般用法和行为的所有相关信息。

forward

<来源>

( input_values: Optional attention_mask: Optional = None labels: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None ) → export const metadata = 'undefined';transformers.modeling_outputs.TokenClassifierOutput or tuple(torch.FloatTensor)

参数

  • input_values(形状为(batch_size, sequence_length)torch.FloatTensor)-输入原始语音波形的浮点值。可以通过将.flac.wav音频文件加载到List[float]类型的数组或numpy.ndarray中获得值,例如通过 soundfile 库(pip install soundfile)。要将数组准备成input_values,应使用 AutoProcessor 进行填充和转换为torch.FloatTensor类型的张量。有关详细信息,请参阅 Wav2Vec2Processor.call()。
  • attention_mask(形状为(batch_size, sequence_length)torch.LongTensor可选)-用于避免在填充标记索引上执行卷积和注意力的掩码。掩码值选在[0, 1]之间:
  • 对于被“未掩码”的标记为 1,
  • 对于被“掩码”的标记。
  • 什么是注意力掩码?
    只有当相应的处理器具有config.return_attention_mask == True时才应传递attention_mask。对于所有处理器具有config.return_attention_mask == False的模型,应避免传递attention_mask以避免在进行批量推断时性能下降。对于这样的模型,input_values应该简单地用 0 填充并在不传递attention_mask的情况下传递。请注意,这些模型根据input_values是否填充会产生略有不同的结果。
  • output_attentions (bool可选) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参阅返回张量下的attentions
  • output_hidden_states (bool可选) — 是否返回所有层的隐藏状态。有关更多详细信息,请参阅返回张量下的hidden_states
  • return_dict (bool可选) — 是否返回 ModelOutput 而不是普通元组。
  • labels (torch.LongTensor of shape (batch_size,), 可选) — 用于计算序列分类/回归损失的标签。索引应在[0, ..., config.num_labels - 1]范围内。如果config.num_labels == 1,则计算回归损失(均方损失),如果config.num_labels > 1,则计算分类损失(交叉熵)。

返回

transformers.modeling_outputs.TokenClassifierOutput 或tuple(torch.FloatTensor)

transformers.modeling_outputs.TokenClassifierOutput 或torch.FloatTensor元组(如果传递return_dict=Falseconfig.return_dict=False)包含根据配置(WavLMConfig)和输入的各种元素。

  • loss (torch.FloatTensor of shape (1,), 可选,当提供labels时返回) — 分类损失。
  • logits (torch.FloatTensor of shape (batch_size, sequence_length, config.num_labels)) — 分类得分(SoftMax 之前)。
  • hidden_states (tuple(torch.FloatTensor)可选,当传递output_hidden_states=Trueconfig.output_hidden_states=True时返回) — 形状为(batch_size, sequence_length, hidden_size)torch.FloatTensor元组(如果模型具有嵌入层,则为嵌入输出的输出 + 每层的输出)。
    模型在每一层输出的隐藏状态加上可选的初始嵌入输出。
  • attentions (tuple(torch.FloatTensor)可选,当传递output_attentions=Trueconfig.output_attentions=True时返回) — 形状为(batch_size, num_heads, sequence_length, sequence_length)torch.FloatTensor元组(每层一个)。
    在注意力 softmax 之后的注意力权重,用于计算自注意力头中的加权平均值。

WavLMForAudioFrameClassification 的前向方法,覆盖了__call__特殊方法。

虽然前向传递的步骤需要在此函数内定义,但应该在此之后调用Module实例而不是此函数,因为前者会负责运行预处理和后处理步骤,而后者会默默地忽略它们。

示例:

>>> from transformers import AutoFeatureExtractor, WavLMForAudioFrameClassification
>>> from datasets import load_dataset
>>> import torch
>>> dataset = load_dataset("hf-internal-testing/librispeech_asr_demo", "clean", split="validation")
>>> dataset = dataset.sort("id")
>>> sampling_rate = dataset.features["audio"].sampling_rate
>>> feature_extractor = AutoFeatureExtractor.from_pretrained("microsoft/wavlm-base-plus-sd")
>>> model = WavLMForAudioFrameClassification.from_pretrained("microsoft/wavlm-base-plus-sd")
>>> # audio file is decoded on the fly
>>> inputs = feature_extractor(dataset[0]["audio"]["array"], return_tensors="pt", sampling_rate=sampling_rate)
>>> with torch.no_grad():
...     logits = model(**inputs).logits
>>> probabilities = torch.sigmoid(logits[0])
>>> # labels is a one-hot array of shape (num_frames, num_speakers)
>>> labels = (probabilities > 0.5).long()
>>> labels[0].tolist()
[0, 0]

WavLMForXVector

class transformers.WavLMForXVector

< source >

( config )

参数

  • config (WavLMConfig) — 具有模型所有参数的模型配置类。使用配置文件初始化不会加载与模型关联的权重,只加载配置。查看 from_pretrained()方法以加载模型权重。

WavLM 模型在顶部具有 XVector 特征提取头,用于说话者验证等任务。

WavLM 是由 Sanyuan Chen、Chengyi Wang、Zhengyang Chen、Yu Wu、Shujie  Liu、Zhuo Chen、Jinyu Li、Naoyuki Kanda、Takuya Yoshioka、Xiong Xiao、Jian  Wu、Long Zhou、Shuo Ren、Yanmin Qian、Yao Qian、Jian Wu、Michael  Zeng、Xiangzhan Yu、Furu Wei 提出的WavLM: Unified Speech Representation Learning with Labeled and Unlabeled Data

此模型继承自 PreTrainedModel。查看超类文档以了解库为所有模型实现的通用方法(例如下载或保存等)。

此模型是 PyTorch torch.nn.Module子类。将其用作常规 PyTorch 模块,并参考 PyTorch 文档以获取有关一般用法和行为的所有相关信息。

forward

< source >

( input_values: Optional attention_mask: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None labels: Optional = None ) → export const metadata = 'undefined';transformers.modeling_outputs.XVectorOutput or tuple(torch.FloatTensor)

参数

  • input_values (torch.FloatTensor,形状为(batch_size, sequence_length)) — 输入原始语音波形的浮点值。可以通过将.flac.wav音频文件加载到List[float]类型的数组或numpy.ndarray中获得值,例如通过 soundfile 库(pip install soundfile)。要准备数组为input_values,应使用 AutoProcessor 进行填充和转换为torch.FloatTensor类型的张量。有关详细信息,请参阅 Wav2Vec2Processor.call()。
  • attention_mask (torch.LongTensor,形状为(batch_size, sequence_length)可选) — 用于避免在填充标记索引上执行卷积和注意力的遮罩。选择的遮罩值在[0, 1]中。
  • 对于未被遮罩的标记,
  • 对于被遮罩的标记为 0。
  • 什么是注意力遮罩?
    只有在相应的处理器具有config.return_attention_mask == True时才应传递attention_mask。对于所有处理器具有config.return_attention_mask == False的模型,应避免传递attention_mask以避免在进行批量推断时性能下降。对于这样的模型,input_values应简单地用 0 填充并在不传递attention_mask的情况下传递。请注意,这些模型根据input_values是否填充会产生略有不同的结果。
  • output_attentions (bool, 可选) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参阅返回张量中的attentions
  • output_hidden_states (bool, 可选) — 是否返回所有层的隐藏状态。有关更多详细信息,请参阅返回张量中的hidden_states
  • return_dict (bool可选) — 是否返回 ModelOutput 而不是普通元组。
  • labels (torch.LongTensor,形状为(batch_size,)可选) — 用于计算序列分类/回归损失的标签。索引应在[0, ..., config.num_labels - 1]中。如果config.num_labels == 1,则计算回归损失(均方损失),如果config.num_labels > 1,则计算分类损失(交叉熵)。

返回

transformers.modeling_outputs.XVectorOutput 或 tuple(torch.FloatTensor)

一个 transformers.modeling_outputs.XVectorOutput 或一个torch.FloatTensor元组(如果传递return_dict=Falseconfig.return_dict=False时)包括根据配置(WavLMConfig)和输入而变化的各种元素。

  • loss (torch.FloatTensor of shape (1,), 可选, 当提供labels时返回) — 分类损失。
  • logits (torch.FloatTensor of shape (batch_size, config.xvector_output_dim)) — AMSoftmax 之前的分类隐藏状态。
  • embeddings (torch.FloatTensor of shape (batch_size, config.xvector_output_dim)) — 用于基于向量相似性检索的话语嵌入。
  • hidden_states (tuple(torch.FloatTensor), 可选, 当传递output_hidden_states=Trueconfig.output_hidden_states=True时返回) — 形状为(batch_size, sequence_length, hidden_size)torch.FloatTensor元组(一个用于嵌入的输出 + 一个用于每一层的输出)。
    模型在每一层输出的隐藏状态加上初始嵌入输出。
  • attentions (tuple(torch.FloatTensor), 可选, 当传递output_attentions=Trueconfig.output_attentions=True时返回) — 形状为(batch_size, num_heads, sequence_length, sequence_length)torch.FloatTensor元组(每层一个)。
    注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。

WavLMForXVector 的前向方法,覆盖了__call__特殊方法。

虽然前向传播的配方需要在这个函数内定义,但应该在此之后调用Module实例,而不是这个,因为前者负责运行前后处理步骤,而后者则默默地忽略它们。

示例:

>>> from transformers import AutoFeatureExtractor, WavLMForXVector
>>> from datasets import load_dataset
>>> import torch
>>> dataset = load_dataset("hf-internal-testing/librispeech_asr_demo", "clean", split="validation")
>>> dataset = dataset.sort("id")
>>> sampling_rate = dataset.features["audio"].sampling_rate
>>> feature_extractor = AutoFeatureExtractor.from_pretrained("microsoft/wavlm-base-plus-sv")
>>> model = WavLMForXVector.from_pretrained("microsoft/wavlm-base-plus-sv")
>>> # audio file is decoded on the fly
>>> inputs = feature_extractor(
...     [d["array"] for d in dataset[:2]["audio"]], sampling_rate=sampling_rate, return_tensors="pt", padding=True
... )
>>> with torch.no_grad():
...     embeddings = model(**inputs).embeddings
>>> embeddings = torch.nn.functional.normalize(embeddings, dim=-1).cpu()
>>> # the resulting embeddings can be used for cosine similarity-based retrieval
>>> cosine_sim = torch.nn.CosineSimilarity(dim=-1)
>>> similarity = cosine_sim(embeddings[0], embeddings[1])
>>> threshold = 0.7  # the optimal threshold is dataset-dependent
>>> if similarity < threshold:
...     print("Speakers are not the same!")
>>> round(similarity.item(), 2)
0.97


相关文章
|
3月前
|
异构计算 索引 AI芯片
Transformers 4.37 中文文档(五十)(7)
Transformers 4.37 中文文档(五十)
26 1
|
3月前
|
自然语言处理 PyTorch 语音技术
Transformers 4.37 中文文档(八十)(4)
Transformers 4.37 中文文档(八十)
41 2
|
3月前
|
PyTorch 语音技术 算法框架/工具
Transformers 4.37 中文文档(八十)(3)
Transformers 4.37 中文文档(八十)
27 2
|
3月前
|
自然语言处理 PyTorch 语音技术
Transformers 4.37 中文文档(八十)(1)
Transformers 4.37 中文文档(八十)
36 2
|
3月前
|
存储 人工智能 PyTorch
Transformers 4.37 中文文档(八十)(2)
Transformers 4.37 中文文档(八十)
28 2
|
3月前
|
缓存 异构计算 索引
Transformers 4.37 中文文档(五十)(8)
Transformers 4.37 中文文档(五十)
19 1
|
3月前
|
机器学习/深度学习 PyTorch 算法框架/工具
Transformers 4.37 中文文档(七十)(3)
Transformers 4.37 中文文档(七十)
24 2
|
3月前
|
PyTorch 算法框架/工具 计算机视觉
Transformers 4.37 中文文档(七十二)(5)
Transformers 4.37 中文文档(七十二)
20 1
|
3月前
|
存储 PyTorch 测试技术
Transformers 4.37 中文文档(五十)(4)
Transformers 4.37 中文文档(五十)
36 0
|
3月前
|
缓存 PyTorch TensorFlow
Transformers 4.37 中文文档(五十)(5)
Transformers 4.37 中文文档(五十)
20 0