Transformers 4.37 中文文档(五十)(4)https://developer.aliyun.com/article/1565252
PegasusModel
class transformers.PegasusModel
( config: PegasusConfig )
参数
config
(PegasusConfig) — 包含模型所有参数的模型配置类。使用配置文件初始化不会加载与模型关联的权重,只会加载配置。查看 from_pretrained()方法以加载模型权重。
裸的 PEGASUS 模型输出原始隐藏状态,没有特定的头部。该模型继承自 PreTrainedModel。检查超类文档以获取库为所有模型实现的通用方法(如下载或保存、调整输入嵌入、修剪头等)。
该模型也是 PyTorch torch.nn.Module子类。将其用作常规 PyTorch 模块,并参考 PyTorch 文档以获取有关一般用法和行为的所有信息。
forward
( input_ids: Optional = None attention_mask: Optional = None decoder_input_ids: Optional = None decoder_attention_mask: Optional = None head_mask: Optional = None decoder_head_mask: Optional = None cross_attn_head_mask: Optional = None encoder_outputs: Optional = None past_key_values: Optional = None inputs_embeds: Optional = None decoder_inputs_embeds: Optional = None use_cache: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None ) → export const metadata = 'undefined';transformers.modeling_outputs.Seq2SeqModelOutput or tuple(torch.FloatTensor)
参数
input_ids
(torch.LongTensor
of shape(batch_size, sequence_length)
) — 输入序列标记在词汇表中的索引。默认情况下将忽略填充。
可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode()和 PreTrainedTokenizer.call
()。
什么是输入 ID?attention_mask
(torch.Tensor
of shape(batch_size, sequence_length)
, optional) — 避免在填充标记索引上执行注意力的掩码。选择在[0, 1]
中的掩码值:
- 对于未被掩码的标记,为 1,
- 对于被掩码的标记,为 0。
- 什么是注意力掩码?
decoder_input_ids
(torch.LongTensor
of shape(batch_size, target_sequence_length)
, optional) — 解码器输入序列标记在词汇表中的索引。
可以使用 AutoTokenizer 来获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode()和 PreTrainedTokenizer.call
()。
什么是解码器输入 ID?
Pegasus 使用pad_token_id
作为decoder_input_ids
生成的起始标记。如果使用了past_key_values
,可以选择仅输入最后的decoder_input_ids
(请参见past_key_values
)。decoder_attention_mask
(形状为(batch_size, target_sequence_length)
的torch.LongTensor
,可选)- 默认行为:生成一个忽略decoder_input_ids
中填充标记的张量。因果掩码也将默认使用。head_mask
(形状为(encoder_layers, encoder_attention_heads)
的torch.Tensor
,可选)- 用于在编码器中使注意力模块的选定头部失效的掩码。掩码值选定在[0, 1]
之间:
- 1 表示头部未被
掩码
。 - 0 表示头部被
掩码
。
decoder_head_mask
(形状为(decoder_layers, decoder_attention_heads)
的torch.Tensor
,可选)- 用于在解码器中使注意力模块的选定头部失效的掩码。掩码值选定在[0, 1]
之间:
- 1 表示头部未被
掩码
。 - 0 表示头部被
掩码
。
cross_attn_head_mask
(形状为(decoder_layers, decoder_attention_heads)
的torch.Tensor
,可选)- 用于在解码器中使交叉注意力模块的选定头部失效的掩码。掩码值选定在[0, 1]
之间:
- 1 表示头部未被
掩码
。 - 0 表示头部被
掩码
。
encoder_outputs
(tuple(tuple(torch.FloatTensor)
,可选)- 元组包括(last_hidden_state
,可选:hidden_states
,可选:attentions
)last_hidden_state
的形状为(batch_size, sequence_length, hidden_size)
,可选)是编码器最后一层输出的隐藏状态序列。用于解码器的交叉注意力。past_key_values
(tuple(tuple(torch.FloatTensor))
,可选,当传递use_cache=True
或config.use_cache=True
时返回)- 长度为config.n_layers
的元组,每个元组有 2 个形状为(batch_size, num_heads, sequence_length, embed_size_per_head)
的张量,以及 2 个额外的形状为(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)
的张量。
包含预先计算的隐藏状态(自注意力块和交叉注意力块中的键和值),可以使用(参见past_key_values
输入)以加速顺序解码。
如果使用了past_key_values
,用户可以选择仅输入最后的decoder_input_ids
(那些没有将它们的过去键值状态提供给此模型的)的形状为(batch_size, 1)
,而不是所有形状为(batch_size, sequence_length)
的decoder_input_ids
。inputs_embeds
(形状为(batch_size, sequence_length, hidden_size)
的torch.FloatTensor
,可选)- 可选择直接传递嵌入表示,而不是传递input_ids
。如果您想要更多控制权,以便将input_ids
索引转换为相关向量,而不是使用模型的内部嵌入查找矩阵,这将非常有用。decoder_inputs_embeds
(形状为(batch_size, target_sequence_length, hidden_size)
的torch.FloatTensor
,可选)- 可选择直接传递嵌入表示,而不是传递decoder_input_ids
。如果使用了past_key_values
,可以选择仅输入最后的decoder_inputs_embeds
(请参见past_key_values
)。这将非常有用,如果您想要更多控制权,以便将decoder_input_ids
索引转换为相关向量,而不是使用模型的内部嵌入查找矩阵。
如果decoder_input_ids
和decoder_inputs_embeds
都未设置,则decoder_inputs_embeds
取inputs_embeds
的值。use_cache
(bool
,optional) — 如果设置为True
,则返回past_key_values
键值状态,可用于加速解码(参见past_key_values
)。output_attentions
(bool
, optional) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参见返回张量下的attentions
。output_hidden_states
(bool
, optional) — 是否返回所有层的隐藏状态。有关更多详细信息,请参见返回张量下的hidden_states
。return_dict
(bool
, optional) — 是否返回一个 ModelOutput,而不是一个普通的元组。
返回
transformers.modeling_outputs.Seq2SeqModelOutput 或 tuple(torch.FloatTensor)
一个 transformers.modeling_outputs.Seq2SeqModelOutput 或一个torch.FloatTensor
元组(如果传递了return_dict=False
或config.return_dict=False
时)包含各种元素,取决于配置(PegasusConfig)和输入。
last_hidden_state
(torch.FloatTensor
,形状为(batch_size, sequence_length, hidden_size)
) — 模型解码器最后一层的隐藏状态序列。
如果使用了past_key_values
,则只输出形状为(batch_size, 1, hidden_size)
的序列的最后一个隐藏状态。past_key_values
(tuple(tuple(torch.FloatTensor))
,optional,当传递了use_cache=True
或config.use_cache=True
时返回) — 长度为config.n_layers
的tuple(torch.FloatTensor)
元组,每个元组有 2 个形状为(batch_size, num_heads, sequence_length, embed_size_per_head)
的张量和 2 个额外的形状为(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)
的张量。
包含预先计算的隐藏状态(自注意力块和交叉注意力块中的键和值),可用于加速顺序解码(参见past_key_values
输入)。decoder_hidden_states
(tuple(torch.FloatTensor)
,optional,当传递了output_hidden_states=True
或config.output_hidden_states=True
时返回) — 形状为(batch_size, sequence_length, hidden_size)
的torch.FloatTensor
元组(如果模型有嵌入层,则为嵌入的输出和每一层的输出)。
解码器在每一层输出处的隐藏状态,以及可选的初始嵌入输出。decoder_attentions
(tuple(torch.FloatTensor)
,optional,当传递了output_attentions=True
或config.output_attentions=True
时返回) — 形状为(batch_size, num_heads, sequence_length, sequence_length)
的torch.FloatTensor
元组(每层一个)。
解码器的注意力权重,在注意力 softmax 之后,用于计算自注意力头中的加权平均值。cross_attentions
(tuple(torch.FloatTensor)
,optional,当传递了output_attentions=True
或config.output_attentions=True
时返回) — 形状为(batch_size, num_heads, sequence_length, sequence_length)
的torch.FloatTensor
元组(每层一个)。
解码器交叉注意力层的注意力权重,在注意力 softmax 之后,用于计算交叉注意力头中的加权平均值。encoder_last_hidden_state
(torch.FloatTensor
,形状为(batch_size, sequence_length, hidden_size)
,optional) — 模型编码器最后一层的隐藏状态序列。encoder_hidden_states
(tuple(torch.FloatTensor)
,可选,当传递output_hidden_states=True
或config.output_hidden_states=True
时返回)- 形状为(batch_size, sequence_length, hidden_size)
的torch.FloatTensor
元组(如果模型有嵌入层的输出,则为一个,每层的输出为一个)。
每层编码器的隐藏状态以及可选的初始嵌入输出。encoder_attentions
(tuple(torch.FloatTensor)
,可选,当传递output_attentions=True
或config.output_attentions=True
时返回)- 形状为(batch_size, num_heads, sequence_length, sequence_length)
的torch.FloatTensor
元组(每层一个)。
编码器的注意力权重,在注意力 softmax 之后,用于计算自注意力头中的加权平均值。
PegasusModel 的前向方法,覆盖了__call__
特殊方法。
虽然前向传递的配方需要在此函数内定义,但应该在之后调用Module
实例而不是这个,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。
示例:
>>> from transformers import AutoTokenizer, PegasusModel >>> tokenizer = AutoTokenizer.from_pretrained("google/pegasus-large") >>> model = PegasusModel.from_pretrained("google/pegasus-large") >>> inputs = tokenizer("Studies have been shown that owning a dog is good for you", return_tensors="pt") >>> decoder_inputs = tokenizer("Studies show that", return_tensors="pt") >>> outputs = model(input_ids=inputs.input_ids, decoder_input_ids=decoder_inputs.input_ids) >>> last_hidden_states = outputs.last_hidden_state >>> list(last_hidden_states.shape) [1, 4, 1024]
PEGASUS 用于条件生成
class transformers.PegasusForConditionalGeneration
( config: PegasusConfig )
参数
config
(PegasusConfig)- 具有模型所有参数的模型配置类。使用配置文件初始化不会加载与模型关联的权重,只加载配置。查看 from_pretrained()方法以加载模型权重。
带有语言建模头的 PEGASUS 模型。可用于摘要。此模型继承自 PreTrainedModel。查看超类文档以了解库为所有模型实现的通用方法(如下载或保存、调整输入嵌入、修剪头等)。
此模型也是 PyTorch torch.nn.Module子类。将其用作常规 PyTorch 模块,并参考 PyTorch 文档以获取有关一般用法和行为的所有相关信息。
forward
( input_ids: Optional = None attention_mask: Optional = None decoder_input_ids: Optional = None decoder_attention_mask: Optional = None head_mask: Optional = None decoder_head_mask: Optional = None cross_attn_head_mask: Optional = None encoder_outputs: Optional = None past_key_values: Optional = None inputs_embeds: Optional = None decoder_inputs_embeds: Optional = None labels: Optional = None use_cache: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None ) → export const metadata = 'undefined';transformers.modeling_outputs.Seq2SeqLMOutput or tuple(torch.FloatTensor)
参数
input_ids
(形状为(batch_size, sequence_length)
的torch.LongTensor
)- 输入序列标记在词汇表中的索引。默认情况下将忽略填充。
可以使用 AutoTokenizer 获取索引。查看 PreTrainedTokenizer.encode()和 PreTrainedTokenizer.call
()以获取详细信息。
什么是输入 ID?attention_mask
(形状为(batch_size, sequence_length)
的torch.Tensor
,可选)- 用于避免在填充标记索引上执行注意力的掩码。掩码值选在[0, 1]
之间:
- 对于未被
masked
的标记为 1, - 对于被
masked
的标记为 0。
- 什么是注意力掩码?
decoder_input_ids
(形状为(batch_size, target_sequence_length)
的torch.LongTensor
,可选)- 解码器输入序列标记在词汇表中的索引。
可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode()和 PreTrainedTokenizer.call
()。
什么是 decoder input IDs?
Pegasus 使用pad_token_id
作为decoder_input_ids
生成的起始标记。如果使用了past_key_values
,可以选择仅输入最后一个decoder_input_ids
(请参见past_key_values
)。decoder_attention_mask
(形状为(batch_size, target_sequence_length)
的torch.LongTensor
,可选)- 默认行为:生成一个忽略decoder_input_ids
中填充标记的张量。因果掩码也将默认使用。head_mask
(形状为(encoder_layers, encoder_attention_heads)
的torch.Tensor
,可选)- 用于使编码器中注意力模块的选定头部失效的掩码。在[0, 1]
中选择的掩码值:
- 1 表示头部未被
掩盖
, - 0 表示头部被
掩盖
。
decoder_head_mask
(形状为(decoder_layers, decoder_attention_heads)
的torch.Tensor
,可选)- 用于使解码器中注意力模块的选定头部失效的掩码。在[0, 1]
中选择的掩码值:
- 1 表示头部未被
掩盖
, - 0 表示头部被
掩盖
。
cross_attn_head_mask
(形状为(decoder_layers, decoder_attention_heads)
的torch.Tensor
,可选)- 用于使解码器中交叉注意力模块的选定头部失效的掩码。在[0, 1]
中选择的掩码值:
- 1 表示头部未被
掩盖
, - 0 表示头部被
掩盖
。
encoder_outputs
(tuple(tuple(torch.FloatTensor)
,可选)- 元组包含(last_hidden_state
,可选:hidden_states
,可选:attentions
)last_hidden_state
的形状为(batch_size, sequence_length, hidden_size)
,可选)是编码器最后一层输出的隐藏状态序列。用于解码器的交叉注意力。past_key_values
(tuple(tuple(torch.FloatTensor))
,可选,当传递use_cache=True
或config.use_cache=True
时返回)- 长度为config.n_layers
的tuple(torch.FloatTensor)
的元组,每个元组有 2 个形状为(batch_size, num_heads, sequence_length, embed_size_per_head)
的张量和 2 个额外的形状为(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)
的张量。
包含预先计算的隐藏状态(自注意力块和交叉注意力块中的键和值),可用于加速顺序解码(请参见past_key_values
输入)。
如果使用了past_key_values
,用户可以选择仅输入形状为(batch_size, 1)
的最后一个decoder_input_ids
(即那些没有将它们的过去键值状态提供给此模型的输入)而不是形状为(batch_size, sequence_length)
的所有decoder_input_ids
。inputs_embeds
(形状为(batch_size, sequence_length, hidden_size)
的torch.FloatTensor
,可选)- 可选地,可以选择直接传递嵌入表示而不是传递input_ids
。如果您想要更多控制如何将input_ids
索引转换为相关向量,而不是使用模型的内部嵌入查找矩阵,这将非常有用。decoder_inputs_embeds
(形状为(batch_size, target_sequence_length, hidden_size)
的torch.FloatTensor
,可选)- 可选地,可以直接传递嵌入表示而不是传递decoder_input_ids
。如果使用了past_key_values
,可以选择仅输入最后一个decoder_inputs_embeds
(参见past_key_values
)。如果您想要更多控制如何将decoder_input_ids
索引转换为相关向量,而不是使用模型的内部嵌入查找矩阵,这将非常有用。
如果decoder_input_ids
和decoder_inputs_embeds
都未设置,则decoder_inputs_embeds
取inputs_embeds
的值。use_cache
(bool
,可选)— 如果设置为True
,则返回past_key_values
键值状态,并可用于加速解码(参见past_key_values
)。output_attentions
(bool
,可选)— 是否返回所有注意力层的注意力张量。有关更多详细信息,请参阅返回张量下的attentions
。output_hidden_states
(bool
,可选)— 是否返回所有层的隐藏状态。有关更多详细信息,请参阅返回张量下的hidden_states
。return_dict
(bool
,可选)— 是否返回 ModelOutput 而不是普通元组。labels
(形状为(batch_size, sequence_length)
的torch.LongTensor
,可选)— 用于计算掩码语言建模损失的标签。索引应该在[0, ..., config.vocab_size]
范围内,或者为-100(参见input_ids
文档字符串)。将索引设置为-100
的标记将被忽略(掩码),损失仅计算具有[0, ..., config.vocab_size]
标签的标记。
返回
transformers.modeling_outputs.Seq2SeqLMOutput 或tuple(torch.FloatTensor)
一个 transformers.modeling_outputs.Seq2SeqLMOutput 或一个torch.FloatTensor
元组(如果传递return_dict=False
或config.return_dict=False
)包含根据配置(PegasusConfig)和输入的各种元素。
loss
(形状为(1,)
的torch.FloatTensor
,可选,当提供labels
时返回)— 语言建模损失。logits
(形状为(batch_size, sequence_length, config.vocab_size)
的torch.FloatTensor
)— 语言建模头的预测分数(SoftMax 之前每个词汇标记的分数)。past_key_values
(tuple(tuple(torch.FloatTensor))
,可选,当传递use_cache=True
或config.use_cache=True
时返回)— 长度为config.n_layers
的tuple(torch.FloatTensor)
元组,每个元组有 2 个形状为(batch_size, num_heads, sequence_length, embed_size_per_head)
的张量和 2 个额外的形状为(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)
的张量。
包含预先计算的隐藏状态(自注意力块和交叉注意力块中的键和值),可用于加速顺序解码。decoder_hidden_states
(tuple(torch.FloatTensor)
,可选,当传递output_hidden_states=True
或config.output_hidden_states=True
时返回)— 形状为(batch_size, sequence_length, hidden_size)
的torch.FloatTensor
元组(如果模型有嵌入层,则为嵌入的输出加上每层的输出)。
解码器在每层输出的隐藏状态加上初始嵌入输出。decoder_attentions
(tuple(torch.FloatTensor)
,可选,当传递output_attentions=True
或config.output_attentions=True
时返回)— 形状为(batch_size, num_heads, sequence_length, sequence_length)
的torch.FloatTensor
元组(每层一个)。
解码器的注意力权重,在注意力 softmax 之后,用于计算自注意力头中的加权平均值。cross_attentions
(tuple(torch.FloatTensor)
,可选,当传递output_attentions=True
或config.output_attentions=True
时返回)— 形状为(batch_size, num_heads, sequence_length, sequence_length)
的torch.FloatTensor
元组(每层一个)。
解码器的交叉注意力层的注意力权重,在注意力 softmax 之后,用于计算交叉注意力头中的加权平均值。encoder_last_hidden_state
(形状为(batch_size, sequence_length, hidden_size)
的torch.FloatTensor
,可选) — 模型编码器最后一层的隐藏状态序列。encoder_hidden_states
(tuple(torch.FloatTensor)
,可选,当传递output_hidden_states=True
或当config.output_hidden_states=True
时返回) — 形状为(batch_size, sequence_length, hidden_size)
的torch.FloatTensor
元组(一个用于嵌入的输出,如果模型有嵌入层,+ 一个用于每个层的输出)。
编码器在每一层的隐藏状态加上初始嵌入输出。encoder_attentions
(tuple(torch.FloatTensor)
,可选,当传递output_attentions=True
或当config.output_attentions=True
时返回) — 形状为(batch_size, num_heads, sequence_length, sequence_length)
的torch.FloatTensor
元组(每层一个)。
编码器的注意力权重,在注意力 softmax 之后,用于计算自注意力头中的加权平均值。
PegasusForConditionalGeneration 的前向方法,覆盖了__call__
特殊方法。
尽管前向传递的步骤需要在此函数内定义,但应该在此之后调用Module
实例,而不是这个,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。
摘要示例:
>>> from transformers import AutoTokenizer, PegasusForConditionalGeneration >>> model = PegasusForConditionalGeneration.from_pretrained("google/pegasus-xsum") >>> tokenizer = AutoTokenizer.from_pretrained("google/pegasus-xsum") >>> ARTICLE_TO_SUMMARIZE = ( ... "PG&E stated it scheduled the blackouts in response to forecasts for high winds " ... "amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were " ... "scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow." ... ) >>> inputs = tokenizer(ARTICLE_TO_SUMMARIZE, max_length=1024, return_tensors="pt") >>> # Generate Summary >>> summary_ids = model.generate(inputs["input_ids"]) >>> tokenizer.batch_decode(summary_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] "California's largest electricity provider has turned off power to hundreds of thousands of customers."
PegasusForCausalLM
class transformers.PegasusForCausalLM
( config )
forward
( input_ids: LongTensor = None attention_mask: Optional = None encoder_hidden_states: Optional = None encoder_attention_mask: Optional = None head_mask: Optional = None cross_attn_head_mask: Optional = None past_key_values: Optional = None inputs_embeds: Optional = None labels: Optional = None use_cache: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None ) → export const metadata = 'undefined';transformers.modeling_outputs.CausalLMOutputWithCrossAttentions or tuple(torch.FloatTensor)
参数
input_ids
(形状为(batch_size, sequence_length)
的torch.LongTensor
) — 词汇表中输入序列标记的索引。默认情况下,如果提供,将忽略填充。
可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode()和 PreTrainedTokenizer.call
()。
什么是输入 ID?attention_mask
(形状为(batch_size, sequence_length)
的torch.Tensor
,可选) — 用于避免对填充标记索引执行注意力的掩码。掩码值选择在[0, 1]
之间:
- 1 表示
未被掩盖
的标记, - 0 表示
被掩盖
的标记。
- 什么是注意力掩码?
encoder_hidden_states
(形状为(batch_size, sequence_length, hidden_size)
的torch.FloatTensor
,可选) — 编码器最后一层的隐藏状态序列。如果模型配置为解码器,则在交叉注意力中使用。encoder_attention_mask
(形状为(batch_size, sequence_length)
的torch.FloatTensor
,可选) — 用于避免对编码器输入的填充标记索引执行注意力的掩码。如果模型配置为解码器,则在交叉注意力中使用此掩码。掩码值选择在[0, 1]
之间:head_mask
(形状为(decoder_layers, decoder_attention_heads)
的torch.Tensor
,可选) — 用于使注意力模块中选择的头部失效的掩码。掩码值选择在[0, 1]
之间:
- 1 表示头部
未被掩盖
, - 0 表示头部
被掩盖
。
cross_attn_head_mask
(形状为(decoder_layers, decoder_attention_heads)
的torch.Tensor
,可选) — 用于使交叉注意力模块中选择的头部失效的掩码。掩码值选择在[0, 1]
之间:
- 1 表示头部
未被掩盖
, - 0 表示头部
被掩盖
。
past_key_values
(tuple(tuple(torch.FloatTensor))
,可选,当传递use_cache=True
或当config.use_cache=True
时返回)— 长度为config.n_layers
的元组,每个元组有 2 个形状为(batch_size, num_heads, sequence_length, embed_size_per_head)
的张量,以及 2 个额外的形状为(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)
的张量。当模型用作序列到序列模型中的解码器时,只有这两个额外的张量是必需的。
包含预先计算的隐藏状态(自注意力块和交叉注意力块中的键和值),可用于加速顺序解码(参见past_key_values
输入)。
如果使用了past_key_values
,用户可以选择仅输入最后的decoder_input_ids
(那些没有将它们的过去键值状态提供给此模型的)的形状为(batch_size, 1)
的张量,而不是形状为(batch_size, sequence_length)
的所有decoder_input_ids
。labels
(形状为(batch_size, sequence_length)
的torch.LongTensor
,可选)— 用于计算掩码语言建模损失的标签。索引应该在[0, ..., config.vocab_size]
或-100(参见input_ids
文档字符串)。索引设置为-100
的标记将被忽略(被masked
),损失仅计算具有标签在[0, ..., config.vocab_size]
中的标记。use_cache
(bool
,可选)— 如果设置为True
,则返回past_key_values
键值状态,可用于加速解码(参见past_key_values
)。
- 对于未被
masked
的标记为 1, - 对于被
masked
的标记为 0。
output_attentions
(bool
,可选)— 是否返回所有注意力层的注意力张量。有关更多详细信息,请参见返回的张量下的attentions
。output_hidden_states
(bool
,可选)— 是否返回所有层的隐藏状态。有关更多详细信息,请参见返回的张量下的hidden_states
。return_dict
(bool
,可选)— 是否返回 ModelOutput 而不是普通元组。
返回
transformers.modeling_outputs.CausalLMOutputWithCrossAttentions 或tuple(torch.FloatTensor)
一个 transformers.modeling_outputs.CausalLMOutputWithCrossAttentions 或一个torch.FloatTensor
的元组(如果传递了return_dict=False
或当config.return_dict=False
时),包括根据配置(PegasusConfig)和输入的不同元素。
loss
(形状为(1,)
的torch.FloatTensor
,可选,当提供labels
时返回)— 语言建模损失(用于下一个标记预测)。logits
(形状为(batch_size, sequence_length, config.vocab_size)
的torch.FloatTensor
)— 语言建模头的预测分数(SoftMax 之前每个词汇标记的分数)。hidden_states
(tuple(torch.FloatTensor)
,可选,当传递output_hidden_states=True
或当config.output_hidden_states=True
时返回)— 形状为(batch_size, sequence_length, hidden_size)
的torch.FloatTensor
元组(如果模型有嵌入层的输出,则为一个,每层的输出为一个)。
每层模型的输出的隐藏状态加上可选的初始嵌入输出。attentions
(tuple(torch.FloatTensor)
,可选,当传递output_attentions=True
或当config.output_attentions=True
时返回)— 形状为(batch_size, num_heads, sequence_length, sequence_length)
的torch.FloatTensor
元组(每层一个)。
注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。cross_attentions
(tuple(torch.FloatTensor)
,可选,当传递output_attentions=True
或config.output_attentions=True
时返回)- 形状为(batch_size, num_heads, sequence_length, sequence_length)
的torch.FloatTensor
元组(每层一个)。
在交叉注意力 softmax 之后的交叉注意力权重,用于计算交叉注意力头中的加权平均值。past_key_values
(tuple(tuple(torch.FloatTensor))
,可选,当传递use_cache=True
或config.use_cache=True
时返回)- 长度为config.n_layers
的torch.FloatTensor
元组的元组,每个元组包含自注意力和交叉注意力层的缓存键、值状态。仅在config.is_decoder = True
时相关。
包含预先计算的隐藏状态(注意力块中的键和值),可以使用(查看past_key_values
输入)以加速顺序解码。
示例:
>>> from transformers import AutoTokenizer, PegasusForCausalLM >>> tokenizer = AutoTokenizer.from_pretrained("google/pegasus-large") >>> model = PegasusForCausalLM.from_pretrained("google/pegasus-large", add_cross_attention=False) >>> assert model.config.is_decoder, f"{model.__class__} has to be configured as a decoder." >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt") >>> outputs = model(**inputs) >>> logits = outputs.logits >>> expected_shape = [1, inputs.input_ids.shape[-1], model.config.vocab_size] >>> list(logits.shape) == expected_shape True
TensorFlow 隐藏 TensorFlow 内容
Transformers 4.37 中文文档(五十)(6)https://developer.aliyun.com/article/1565255