Transformers 4.37 中文文档(三十六)(1)

简介: Transformers 4.37 中文文档(三十六)


原文:huggingface.co/docs/transformers

GPT-NeoX

原文链接:huggingface.co/docs/transformers/v4.37.2/en/model_doc/gpt_neox

概述

我们介绍了 GPT-NeoX-20B,这是一个拥有 200 亿参数的自回归语言模型,经过  Pile 训练,其权重将通过宽松许可证免费向公众开放。据我们所知,这是在提交时具有公开可用权重的最大稠密自回归模型。在这项工作中,我们描述了  GPT-NeoX-20B 的架构和训练,并评估了其在一系列语言理解、数学和基于知识的任务上的性能。我们发现,GPT-NeoX-20B  是一个特别强大的少样本推理器,在进行五次评估时性能提升明显,而与大小相似的 GPT-3 和 FairSeq  模型相比。我们开源了训练和评估代码,以及模型权重,链接为 github.com/EleutherAI/gpt-neox

该模型的开发由 Sid Black、Stella Biderman 和 Eric Hallahan 领导,模型在 CoreWeave 的慷慨支持下进行了训练。

GPT-NeoX-20B 使用 fp16 进行训练,因此建议按以下方式初始化模型:

model = GPTNeoXForCausalLM.from_pretrained("EleutherAI/gpt-neox-20b").half().cuda()

GPT-NeoX-20B 还具有与 GPT-J-6B 和 GPT-Neo 中使用的不同分词器。新的分词器为空格字符分配了额外的标记,使模型更适合某些任务,如代码生成。

使用示例

generate() 方法可用于使用 GPT Neo 模型生成文本。

>>> from transformers import GPTNeoXForCausalLM, GPTNeoXTokenizerFast
>>> model = GPTNeoXForCausalLM.from_pretrained("EleutherAI/gpt-neox-20b")
>>> tokenizer = GPTNeoXTokenizerFast.from_pretrained("EleutherAI/gpt-neox-20b")
>>> prompt = "GPTNeoX20B is a 20B-parameter autoregressive Transformer model developed by EleutherAI."
>>> input_ids = tokenizer(prompt, return_tensors="pt").input_ids
>>> gen_tokens = model.generate(
...     input_ids,
...     do_sample=True,
...     temperature=0.9,
...     max_length=100,
... )
>>> gen_text = tokenizer.batch_decode(gen_tokens)[0]

使用 Flash Attention 2

Flash Attention 2 是模型的更快、优化版本。

安装

首先,检查您的硬件是否与 Flash Attention 2 兼容。最新的兼容硬件列表可以在官方文档中找到。如果您的硬件与 Flash Attention 2 不兼容,您仍然可以通过上述使用 Better Transformer 支持受益于注意力核优化。

接下来,安装最新版本的 Flash Attention 2:

pip install -U flash-attn --no-build-isolation

用法

要使用 Flash Attention 2 加载模型,我们可以将参数 attn_implementation="flash_attention_2" 传递给 .from_pretrained。我们还将以半精度(例如 torch.float16)加载模型,因为这几乎不会降低音频质量,但显著降低内存使用量并加快推理速度:

>>> from transformers import GPTNeoXForCausalLM, GPTNeoXTokenizerFast
model = GPTNeoXForCausalLM.from_pretrained("EleutherAI/gpt-neox-20b", torch_dtype=torch.float16, attn_implementation="flash_attention_2").to(device)
...

预期加速

下面是一个预期加速图表,比较了在使用 stockmark/gpt-neox-japanese-1.4b 检查点的 transformers 中的原生实现和使用序列长度为 2048 的模型的 Flash Attention 2 版本之间的纯推理时间。

资源

  • 因果语言建模任务指南

GPTNeoXConfig

class transformers.GPTNeoXConfig

<来源>

( vocab_size = 50432 hidden_size = 6144 num_hidden_layers = 44 num_attention_heads = 64 intermediate_size = 24576 hidden_act = 'gelu' rotary_pct = 0.25 rotary_emb_base = 10000 attention_dropout = 0.0 hidden_dropout = 0.0 classifier_dropout = 0.1 max_position_embeddings = 2048 initializer_range = 0.02 layer_norm_eps = 1e-05 use_cache = True bos_token_id = 0 eos_token_id = 2 tie_word_embeddings = False use_parallel_residual = True rope_scaling = None attention_bias = True **kwargs )

参数

  • vocab_sizeint可选,默认为 50432)— GPTNeoX 模型的词汇量。定义了在调用 GPTNeoXModel 时可以由 inputs_ids 表示的不同标记数量。
  • hidden_sizeint可选,默认为 6144)— 编码器层和池化层的维度。
  • num_hidden_layersint可选,默认为 44)— Transformer 编码器中的隐藏层数量。
  • num_attention_heads (int, optional, defaults to 64) — Transformer 编码器中每个注意力层的注意力头数。
  • intermediate_size (int, optional, defaults to 24576) — Transformer 编码器中“中间”(即前馈)层的维度。
  • hidden_act (str or function, optional, defaults to "gelu") — 编码器和池化器中的非线性激活函数(函数或字符串)。如果是字符串,支持"gelu""relu""selu""gelu_new"
  • rotary_pct (float, optional, defaults to 0.25) — 隐藏维度分配给旋转嵌入的百分比
  • rotary_emb_base (int, optional, defaults to 10000) — 计算旋转嵌入频率的基数
  • attention_dropout (float, optional, defaults to 0.0) — 注意力分数的 dropout 比例概率。
  • hidden_dropout (float, optional, defaults to 0.0) — (1)词嵌入的 dropout 比例,(2)注意力后隐藏状态的 dropout 比例,以及(3)MLP 后隐藏状态的 dropout 比例。
  • classifier_dropout (float, optional, defaults to 0.1) — 在进行标记分类时使用的参数,在模型 GPTNeoXForTokenClassification 中使用。
    隐藏层的 dropout 比例。
  • max_position_embeddings (int, optional, defaults to 2048) — 此模型可能使用的最大序列长度。通常将其设置为较大的值以防万一(例如 512、1024 或 2048)。
  • initializer_range (float, optional, defaults to 1e-5) — 用于初始化所有权重矩阵的截断正态初始化器的标准差。
  • layer_norm_eps (float, optional, defaults to 1e-12) — 层归一化层使用的 epsilon。
  • use_cache (bool, optional, defaults to True) — 模型是否应返回最后的键/值注意力(不是所有模型都使用)。仅在config.is_decoder=True时相关。
  • use_parallel_residual (bool, optional, defaults to True) — 是否在每个 Transformer 层中使用“并行”公式,这可以在大规模(例如 20B)时提供轻微的训练加速。
  • rope_scaling (Dict, optional) — 包含 RoPE 嵌入的缩放配置的字典。目前支持两种缩放策略:线性和动态。它们的缩放因子必须是大于 1 的浮点数。预期格式为{"type": 策略名称, "factor": 缩放因子}。在使用此标志时,不要将max_position_embeddings更新为预期的新最大值。有关这些缩放策略行为的更多信息,请参阅以下线程:www.reddit.com/r/LocalLLaMA/comments/14mrgpr/dynamically_scaled_rope_further_increases/。这是一个实验性功能,可能在未来版本中发生破坏性 API 更改。
  • attention_bias (bool, optional, defaults to True) — 在自注意力期间的查询、键、值和输出投影层中是否使用偏置。
    示例 —

这是用于存储 GPTNeoXModel 配置的配置类。它用于根据指定的参数实例化一个 GPTNeoX 模型,定义模型架构。使用默认值实例化配置将产生类似于 GPTNeoX EleutherAI/gpt-neox-20b架构的配置。

配置对象继承自 PretrainedConfig,可用于控制模型输出。阅读来自 PretrainedConfig 的文档以获取更多信息。

>>> from transformers import GPTNeoXConfig, GPTNeoXModel
>>> # Initializing a GPTNeoX gpt-neox-20b style configuration
>>> configuration = GPTNeoXConfig()
>>> # Initializing a model (with random weights) from the gpt-neox-20b style configuration
>>> model = GPTNeoXModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config

GPTNeoXTokenizerFast

class transformers.GPTNeoXTokenizerFast

< 源代码 >

( vocab_file = None merges_file = None tokenizer_file = None unk_token = '<|endoftext|>' bos_token = '<|endoftext|>' eos_token = '<|endoftext|>' add_prefix_space = False **kwargs )

参数

  • vocab_file (str) — 词汇文件的路径。
  • merges_file (str) — 合并文件的路径。
  • errors (str, optional, 默认为 "replace") — 解码字节为 UTF-8 时要遵循的范例。更多信息请参考 bytes.decode
  • unk_tokenstroptional,默认为<|endoftext|>)–未知令牌。词汇表中没有的令牌无法转换为 ID,而是设置为该令牌。
  • bos_tokenstroptional,默认为<|endoftext|>)–序列标记的开头。
  • eos_tokenstroptional,默认为<|endoftext|>)–序列结束标记。
  • add_prefix_space (bool, optional, 默认为 False) — 是否在输入前添加一个初始空格。这允许将前导单词视为任何其他单词。 (GPTNeoX 分词器通过前面的空格检测单词的开头)。
  • trim_offsets (bool, optional, 默认为 True) — 后处理步骤是否应修剪偏移量以避免包含空格。

构建一个“快速” GPT-NeoX-20B 分词器(由 HuggingFace 的 tokenizers 库支持)。基于字节级字节对编码。

此分词器经过训练,将空格视为标记的一部分(有点像 sentencepiece),因此一个单词将

在句子开头(无空格)或不在句子开头时,将被编码为不同的方式:

>>> from transformers import GPTNeoXTokenizerFast
>>> tokenizer = GPTNeoXTokenizerFast.from_pretrained("gpt2")
>>> tokenizer("Hello world")["input_ids"]
[15496, 995]
>>> tokenizer(" Hello world")["input_ids"]
[18435, 995]

您可以通过在实例化此分词器时传递 add_prefix_space=True 来避免这种行为,但由于模型不是以这种方式进行预训练的,可能会导致性能下降。

当与 is_split_into_words=True 一起使用时,此分词器需要使用 add_prefix_space=True 进行实例化。

此分词器继承自 PreTrainedTokenizerFast,其中包含大部分主要方法。用户应参考此超类以获取有关这些方法的更多信息。

GPTNeoXModel

class transformers.GPTNeoXModel

< 源代码 >

( config )

参数

  • config (~GPTNeoXConfig) — 包含模型所有参数的模型配置类。使用配置文件初始化不会加载与模型相关的权重,只会加载配置。查看 from_pretrained() 方法以加载模型权重。

裸的 GPTNeoX 模型变压器输出原始隐藏状态,没有特定的头部。此模型是 PyTorch torch.nn.Module 的子类。将其用作常规 PyTorch 模块,并参考 PyTorch 文档以获取有关一般用法和行为的所有相关信息。

forward

< 源代码 >

( input_ids: Optional = None attention_mask: Optional = None position_ids: Optional = None head_mask: Optional = None inputs_embeds: Optional = None past_key_values: Optional = None use_cache: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None ) → export const metadata = 'undefined';transformers.modeling_outputs.BaseModelOutputWithPast or tuple(torch.FloatTensor)

参数

  • input_ids (torch.LongTensor,形状为 (batch_size, sequence_length)) — 输入序列标记在词汇表中的索引。
    可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call()。
    什么是输入 ID?
  • attention_mask (torch.FloatTensor,形状为 (batch_size, sequence_length)optional) — 避免在填充标记索引上执行注意力的掩码。选择在 [0, 1] 中的掩码值:
  • 1 代表 未被掩盖 的标记,
  • 0 代表 被掩盖 的标记。
  • 什么是注意力掩码?
  • position_ids (torch.LongTensor,形状为(batch_size, sequence_length)optional) — 每个输入序列标记在位置嵌入中的位置索引。选在范围[0, config.n_positions - 1]内。
    什么是位置 ID?
  • head_mask (torch.FloatTensor,形状为(num_heads,)(num_layers, num_heads)optional) — 用于使自注意力模块中的特定头部失效的掩码。掩码值选在[0, 1]之间:
  • 1 表示头部未被掩码,
  • 0 表示头部被掩码。
  • inputs_embeds (torch.FloatTensor,形状为(batch_size, sequence_length, hidden_size)optional) — 可选地,可以直接传递嵌入表示而不是传递input_ids。如果您想要更多控制如何将input_ids索引转换为相关向量,而不是使用模型的内部嵌入查找矩阵,则这很有用。
  • output_attentions (booloptional) — 是否返回所有注意力层的注意力张量。有关更多细节,请查看返回张量中的attentions
  • output_hidden_states (booloptional) — 是否返回所有层的隐藏状态。有关更多细节,请查看返回张量中的hidden_states
  • return_dict (bool, optional) — 是否返回一个 ModelOutput 而不是一个普通的元组。
  • past_key_values (tuple(tuple(torch.FloatTensor)),长度为config.n_layers,每个元组有 4 个形状为(batch_size, num_heads, sequence_length - 1, embed_size_per_head)的张量) — 包含注意力块的预先计算的键和值隐藏状态。可用于加速解码。如果使用past_key_values,用户可以选择仅输入形状为(batch_size, 1)的最后一个decoder_input_ids(即那些没有将过去的键值状态提供给该模型的输入)而不是形状为(batch_size, sequence_length)的所有decoder_input_ids
  • use_cache (booloptional) — 如果设置为True,则返回past_key_values键值状态,可用于加速解码(查看past_key_values)。

返回

transformers.modeling_outputs.BaseModelOutputWithPast 或tuple(torch.FloatTensor)

一个 transformers.modeling_outputs.BaseModelOutputWithPast 或一个torch.FloatTensor元组(如果传递return_dict=Falseconfig.return_dict=False时)包含根据配置(GPTNeoXConfig)和输入而异的各种元素。

  • last_hidden_state (torch.FloatTensor,形状为(batch_size, sequence_length, hidden_size)) — 模型最后一层的隐藏状态序列。
    如果仅使用past_key_values,则输出形状为(batch_size, 1, hidden_size)的序列的最后一个隐藏状态。
  • past_key_values (tuple(tuple(torch.FloatTensor))optional,当传递use_cache=Trueconfig.use_cache=True时返回) — 长度为config.n_layerstuple(torch.FloatTensor)元组,每个元组有 2 个形状为(batch_size, num_heads, sequence_length, embed_size_per_head)的张量)和可选地如果config.is_encoder_decoder=True还有 2 个形状为(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)的张量。
    包含预先计算的隐藏状态(自注意力块中的键和值以及在交叉注意力块中可选地使用config.is_encoder_decoder=True)可用于加速顺序解码。
  • hidden_states (tuple(torch.FloatTensor)可选,当传递 output_hidden_states=Trueconfig.output_hidden_states=True 时返回) — 形状为 (batch_size, sequence_length, hidden_size)torch.FloatTensor 元组(如果模型有嵌入层,则为嵌入输出的输出 + 每层的输出)。
    模型在每一层输出的隐藏状态以及可选的初始嵌入输出。
  • attentions (tuple(torch.FloatTensor)可选,当传递 output_attentions=Trueconfig.output_attentions=True 时返回) — 形状为 (batch_size, num_heads, sequence_length, sequence_length)torch.FloatTensor 元组(每层一个)。
    在自注意力头中用于计算加权平均值的注意力 softmax 后的注意力权重。

GPTNeoXModel 的前向方法,覆盖了 __call__ 特殊方法。

尽管前向传递的步骤需要在此函数内定义,但应该在此之后调用 Module 实例,而不是在此处调用,因为前者会处理运行前后处理步骤,而后者会默默忽略它们。

此示例使用一个随机模型,因为真实模型都非常庞大。为了获得正确的结果,您应该使用 EleutherAI/gpt-neox-20b 而不是  trl-internal-testing/tiny-random-GPTNeoXForCausalLM。如果在加载该检查点时遇到内存不足的情况,可以尝试在  from_pretrained 调用中添加 device_map="auto"

示例:

>>> from transformers import AutoTokenizer, GPTNeoXModel
>>> import torch
>>> tokenizer = AutoTokenizer.from_pretrained("trl-internal-testing/tiny-random-GPTNeoXForCausalLM")
>>> model = GPTNeoXModel.from_pretrained("trl-internal-testing/tiny-random-GPTNeoXForCausalLM")
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
>>> outputs = model(**inputs)
>>> last_hidden_states = outputs.last_hidden_state

GPTNeoXForCausalLM

class transformers.GPTNeoXForCausalLM

< source >

( config )

参数

  • config (~GPTNeoXConfig) — 包含模型所有参数的模型配置类。使用配置文件初始化不会加载与模型相关的权重,只加载配置。查看 from_pretrained() 方法以加载模型权重。

在顶部带有 语言建模 头部的 GPTNeoX 模型,用于 CLM 微调。这个模型是 PyTorch torch.nn.Module 的子类。将其用作常规的 PyTorch 模块,并参考 PyTorch 文档以获取有关一般用法和行为的所有相关信息。

forward

< source >

( input_ids: Optional = None attention_mask: Optional = None position_ids: Optional = None inputs_embeds: Optional = None head_mask: Optional = None past_key_values: Optional = None labels: Optional = None use_cache: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None ) → export const metadata = 'undefined';transformers.modeling_outputs.CausalLMOutputWithPast or tuple(torch.FloatTensor)

参数

  • input_ids (torch.LongTensor,形状为 (batch_size, sequence_length)) — 词汇表中输入序列标记的索引。
    可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call()。
    什么是输入 ID?
  • attention_mask (torch.FloatTensor,形状为 (batch_size, sequence_length)可选) — 用于避免在填充标记索引上执行注意力的掩码。掩码值选择在 [0, 1]
  • 对于未被 掩码 的标记为 1,
  • 对于被 掩码 的标记为 0。
  • 什么是注意力掩码?
  • position_ids (torch.LongTensor,形状为 (batch_size, sequence_length)可选) — 每个输入序列标记在位置嵌入中的位置索引。选择范围为 [0, config.n_positions - 1]
    什么是位置 ID?
  • head_mask (torch.FloatTensor of shape (num_heads,) or (num_layers, num_heads), optional) — 用于使自注意力模块中的选定头部失效的掩码。掩码值选定在 [0, 1] 之间:
  • 1 表示头部未被掩盖,
  • 0 表示头部被掩盖。
  • inputs_embeds (torch.FloatTensor of shape (batch_size, sequence_length, hidden_size), optional) — 可选,您可以选择直接传递嵌入表示而不是传递input_ids。如果您想要更多控制权来将input_ids索引转换为相关向量,这将非常有用,而不是使用模型的内部嵌入查找矩阵。
  • output_attentions (bool, optional) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参见返回张量下的attentions
  • output_hidden_states (bool, optional) — 是否返回所有层的隐藏状态。有关更多详细信息,请参见返回张量下的hidden_states
  • return_dict (bool, optional) — 是否返回一个 ModelOutput 而不是一个普通的元组。
  • past_key_values (tuple(tuple(torch.FloatTensor)), optional, 当传递use_cache=Trueconfig.use_cache=True时返回) — 长度为config.n_layerstuple(torch.FloatTensor)元组,每个元组有 2 个形状为(batch_size, num_heads, sequence_length, embed_size_per_head)的张量,以及 2 个形状为(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)的额外张量。当模型用作序列到序列模型中的解码器时,只有在需要时才需要这两个额外张量。
    包含预先计算的隐藏状态(自注意力块中的键和值,可用于加速顺序解码(请参见past_key_values输入)。
    如果使用past_key_values,用户可以选择仅输入最后的decoder_input_ids(这些没有将它们的过去键值状态提供给此模型的)的形状为(batch_size, 1)的张量,而不是形状为(batch_size, sequence_length)的所有decoder_input_ids
  • labels (torch.LongTensor of shape (batch_size, sequence_length), optional) — 用于计算从左到右的语言建模损失(下一个单词预测)的标签。索引应在 [-100, 0, ..., config.vocab_size] 内(参见 input_ids 文档字符串)。索引设置为 -100 的标记将被忽略(掩盖),损失仅计算具有标签 n [0, ..., config.vocab_size] 的标记。
  • use_cache (bool, optional) — 如果设置为True,则返回past_key_values键值状态,可用于加速解码(请参见past_key_values)。

返回

transformers.modeling_outputs.CausalLMOutputWithPast 或 tuple(torch.FloatTensor)

一个 transformers.modeling_outputs.CausalLMOutputWithPast 或一个torch.FloatTensor元组(如果传递return_dict=Falseconfig.return_dict=False时)包含各种元素,这取决于配置(GPTNeoXConfig)和输入。

  • loss (torch.FloatTensor of shape (1,), optional, 当提供labels时返回) — 语言建模损失(用于下一个标记预测)。
  • logits (torch.FloatTensor of shape (batch_size, sequence_length, config.vocab_size)) — 语言建模头的预测分数(SoftMax 之前每个词汇标记的分数)。
  • past_key_values (tuple(tuple(torch.FloatTensor)), optional, 当传递use_cache=Trueconfig.use_cache=True时返回) — 长度为config.n_layerstuple(torch.FloatTensor)元组,每个元组有 2 个形状为(batch_size, num_heads, sequence_length, embed_size_per_head)的张量。
    包含预先计算的隐藏状态(自注意力块中的键和值),可以使用(查看 past_key_values 输入)以加速顺序解码。
  • hidden_states (tuple(torch.FloatTensor)可选,当传递 output_hidden_states=True 或当 config.output_hidden_states=True 时返回) — 形状为 (batch_size, sequence_length, hidden_size)torch.FloatTensor 元组(如果模型有嵌入层,则为嵌入的输出 + 每一层的输出)。
    模型在每一层输出处的隐藏状态以及可选的初始嵌入输出。
  • attentions (tuple(torch.FloatTensor)可选,当传递 output_attentions=True 或当 config.output_attentions=True 时返回) — 形状为 (batch_size, num_heads, sequence_length, sequence_length)torch.FloatTensor 元组(每层一个)。
    注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。

GPTNeoXForCausalLM 的前向方法,覆盖了 __call__ 特殊方法。

虽然前向传递的步骤需要在此函数内定义,但应该在此之后调用 Module 实例,而不是在此处调用,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。

示例:

>>> from transformers import AutoTokenizer, GPTNeoXForCausalLM, GPTNeoXConfig
>>> import torch
>>> tokenizer = AutoTokenizer.from_pretrained("EleutherAI/gpt-neox-20b")
>>> config = GPTNeoXConfig.from_pretrained("EleutherAI/gpt-neox-20b")
>>> config.is_decoder = True
>>> model = GPTNeoXForCausalLM.from_pretrained("EleutherAI/gpt-neox-20b", config=config)
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
>>> outputs = model(**inputs)
>>> prediction_logits = outputs.logits

GPTNeoXForQuestionAnswering

class transformers.GPTNeoXForQuestionAnswering

<来源>

( config )

参数

  • config(~GPTNeoXConfig) — 具有模型所有参数的模型配置类。使用配置文件初始化不会加载与模型相关的权重,只会加载配置。查看 from_pretrained() 方法以加载模型权重。

GPT-NeoX 模型变压器,顶部带有用于类似 SQuAD 的抽取式问答任务的跨度分类头(在隐藏状态输出顶部的线性层上计算 跨度起始对数跨度结束对数)。

这个模型是 PyTorch torch.nn.Module 的子类。将其用作常规的 PyTorch 模块,并参考 PyTorch 文档以获取与一般用法和行为相关的所有事项。

forward

<来源>

( input_ids: Optional = None attention_mask: Optional = None token_type_ids: Optional = None position_ids: Optional = None head_mask: Optional = None inputs_embeds: Optional = None start_positions: Optional = None end_positions: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None ) → export const metadata = 'undefined';transformers.modeling_outputs.QuestionAnsweringModelOutput or tuple(torch.FloatTensor)

参数

  • input_ids (torch.LongTensor,形状为 (batch_size, sequence_length)) — 词汇中输入序列标记的索引。
    可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call()。
    什么是输入 ID?
  • attention_mask (torch.FloatTensor,形状为 (batch_size, sequence_length)可选) — 用于避免在填充标记索引上执行注意力的掩码。掩码值选在 [0, 1]
  • 对于 未掩码 的标记为 1,
  • 对于 已掩码 的标记为 0。
  • 什么是注意力掩码?
  • position_ids (torch.LongTensor,形状为 (batch_size, sequence_length)可选) — 每个输入序列标记在位置嵌入中的位置索引。在范围 [0, config.n_positions - 1] 中选择。
    什么是位置 ID?
  • head_mask(形状为(num_heads,)(num_layers, num_heads)torch.FloatTensor可选)- 用于使自注意力模块中选择的头部失效的掩码。掩码值选择在[0, 1]中:
  • 1 表示头部未被masked
  • 0 表示头部被masked
  • inputs_embeds(形状为(batch_size, sequence_length, hidden_size)torch.FloatTensor可选)- 可选地,您可以选择直接传递嵌入表示,而不是传递input_ids。如果您想要更多控制权来将input_ids索引转换为相关向量,而不是使用模型的内部嵌入查找矩阵,这将非常有用。
  • output_attentions可选bool)- 是否返回所有注意力层的注意力张量。有关更多详细信息,请参阅返回张量下的attentions
  • output_hidden_statesbool可选)- 是否返回所有层的隐藏状态。有关更多详细信息,请参阅返回张量下的hidden_states
  • return_dict可选bool)- 是否返回一个 ModelOutput 而不是一个普通元组。
  • start_positions(形状为(batch_size,)torch.LongTensor可选)- 用于计算标记跨度的开始位置(索引)的标签。位置被夹紧到序列的长度(sequence_length)。序列外的位置不会计入损失计算。
  • end_positions(形状为(batch_size,)torch.LongTensor可选)- 用于计算标记跨度的结束位置(索引)的标签。位置被夹紧到序列的长度(sequence_length)。序列外的位置不会计入损失计算。

返回

transformers.modeling_outputs.QuestionAnsweringModelOutput 或tuple(torch.FloatTensor)

transformers.modeling_outputs.QuestionAnsweringModelOutput 或一个torch.FloatTensor元组(如果传递return_dict=Falseconfig.return_dict=False时)包含各种元素,这取决于配置(GPTNeoXConfig)和输入。

  • loss(形状为(1,)torch.FloatTensor可选,当提供labels时返回)- 总跨度提取损失是起始位置和结束位置的交叉熵之和。
  • start_logits(形状为(batch_size, sequence_length)torch.FloatTensor)- 跨度开始得分(SoftMax 之前)。
  • end_logits(形状为(batch_size, sequence_length)torch.FloatTensor)- 跨度结束得分(SoftMax 之前)。
  • hidden_statestuple(torch.FloatTensor)可选,当传递output_hidden_states=Trueconfig.output_hidden_states=True时返回)- 形状为(batch_size, sequence_length, hidden_size)torch.FloatTensor元组(如果模型有嵌入层,则为嵌入的输出+每层的输出)。
    模型在每一层输出的隐藏状态加上可选的初始嵌入输出。
  • attentionstuple(torch.FloatTensor)可选,当传递output_attentions=Trueconfig.output_attentions=True时返回)- 形状为(batch_size, num_heads, sequence_length, sequence_length)torch.FloatTensor元组(每层一个)。
    注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。

GPTNeoXForQuestionAnswering 的前向方法,覆盖了__call__特殊方法。

虽然前向传递的步骤需要在此函数内定义,但应该在此之后调用Module实例,而不是在此处调用,因为前者会处理运行前后处理步骤,而后者会默默地忽略它们。

此示例使用随机模型,因为真实模型都非常庞大。为了获得正确的结果,您应该使用 EleutherAI/gpt-neox-20b,而不是  trl-internal-testing/tiny-random-GPTNeoXForCausalLM。如果在加载该检查点时出现内存不足的情况,可以尝试在from_pretrained调用中添加device_map="auto"

示例:

>>> from transformers import AutoTokenizer, GPTNeoXForQuestionAnswering
>>> import torch
>>> tokenizer = AutoTokenizer.from_pretrained("trl-internal-testing/tiny-random-GPTNeoXForCausalLM")
>>> model = GPTNeoXForQuestionAnswering.from_pretrained("trl-internal-testing/tiny-random-GPTNeoXForCausalLM")
>>> question, text = "Who was Jim Henson?", "Jim Henson was a nice puppet"
>>> inputs = tokenizer(question, text, return_tensors="pt")
>>> with torch.no_grad():
...     outputs = model(**inputs)
>>> answer_start_index = outputs.start_logits.argmax()
>>> answer_end_index = outputs.end_logits.argmax()
>>> predict_answer_tokens = inputs.input_ids[0, answer_start_index : answer_end_index + 1]
>>> # target is "nice puppet"
>>> target_start_index = torch.tensor([14])
>>> target_end_index = torch.tensor([15])
>>> outputs = model(**inputs, start_positions=target_start_index, end_positions=target_end_index)
>>> loss = outputs.loss


Transformers 4.37 中文文档(三十六)(2)https://developer.aliyun.com/article/1564719

相关文章
|
3月前
|
存储 PyTorch 算法框架/工具
Transformers 4.37 中文文档(三十六)(3)
Transformers 4.37 中文文档(三十六)
28 1
|
3月前
|
算法框架/工具 异构计算 索引
Transformers 4.37 中文文档(三十六)(5)
Transformers 4.37 中文文档(三十六)
21 0
|
3月前
|
PyTorch TensorFlow 算法框架/工具
Transformers 4.37 中文文档(三十六)(4)
Transformers 4.37 中文文档(三十六)
26 0
|
3月前
|
存储 PyTorch 算法框架/工具
Transformers 4.37 中文文档(三十六)(2)
Transformers 4.37 中文文档(三十六)
22 0
|
3月前
|
存储 自然语言处理 PyTorch
Transformers 4.37 中文文档(三十一)(4)
Transformers 4.37 中文文档(三十一)
30 0
|
3月前
|
缓存 数据挖掘 PyTorch
Transformers 4.37 中文文档(三十一)(3)
Transformers 4.37 中文文档(三十一)
31 0
|
3月前
|
存储 PyTorch TensorFlow
Transformers 4.37 中文文档(三十一)(1)
Transformers 4.37 中文文档(三十一)
39 0
|
3月前
|
自然语言处理 PyTorch 算法框架/工具
Transformers 4.37 中文文档(三十一)(5)
Transformers 4.37 中文文档(三十一)
28 0
|
3月前
|
PyTorch 算法框架/工具 异构计算
Transformers 4.37 中文文档(三十一)(2)
Transformers 4.37 中文文档(三十一)
27 0
|
3月前
|
存储 PyTorch 算法框架/工具
Transformers 4.37 中文文档(三十八)(2)
Transformers 4.37 中文文档(三十八)
20 0