Transformers 4.37 中文文档(三十)(4)https://developer.aliyun.com/article/1564675
ElectraForQuestionAnswering
class transformers.ElectraForQuestionAnswering
( config )
参数
config
(ElectraConfig) — 具有模型所有参数的模型配置类。使用配置文件初始化不会加载与模型关联的权重,只加载配置。查看 from_pretrained()方法以加载模型权重。
ELECTRA 模型,顶部带有一个用于提取问答任务(如 SQuAD)的跨度分类头(在隐藏状态输出的顶部进行线性层计算span start logits
和span end logits
)。
这个模型继承自 PreTrainedModel。查看超类文档,了解库为所有模型实现的通用方法(如下载或保存、调整输入嵌入、修剪头等)。
这个模型也是一个 PyTorch torch.nn.Module子类。将其用作常规的 PyTorch 模块,并参考 PyTorch 文档以获取与一般用法和行为相关的所有内容。
forward
( input_ids: Optional = None attention_mask: Optional = None token_type_ids: Optional = None position_ids: Optional = None head_mask: Optional = None inputs_embeds: Optional = None start_positions: Optional = None end_positions: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None ) → export const metadata = 'undefined';transformers.modeling_outputs.QuestionAnsweringModelOutput or tuple(torch.FloatTensor)
参数
input_ids
(形状为(batch_size, sequence_length)
的torch.LongTensor
)— 词汇表中输入序列标记的索引。
可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode()和 PreTrainedTokenizer.call
()。
什么是输入 ID?attention_mask
(形状为(batch_size, sequence_length)
的torch.FloatTensor
,可选)— 用于避免在填充标记索引上执行注意力的掩码。掩码值选择在[0, 1]
之间:
- 1 表示未被“掩盖”的标记,
- 0 表示被“掩盖”的标记。
- 什么是注意力掩码?
token_type_ids
(形状为(batch_size, sequence_length)
的torch.LongTensor
,可选)— 段标记索引,指示输入的第一部分和第二部分。索引选择在[0, 1]
之间:
- 0 对应于句子 A标记,
- 1 对应于句子 B标记。
- 什么是标记类型 ID?
position_ids
(形状为(batch_size, sequence_length)
的torch.LongTensor
,可选)— 每个输入序列标记在位置嵌入中的位置索引。选择范围为[0, config.max_position_embeddings - 1]
。
什么是位置 ID?head_mask
(形状为(num_heads,)
或(num_layers, num_heads)
的torch.FloatTensor
,可选)— 用于使自注意力模块的选定头部失效的掩码。掩码值选择在[0, 1]
之间:
- 1 表示头部未被“掩盖”,
- 0 表示头部被“掩盖”。
inputs_embeds
(形状为(batch_size, sequence_length, hidden_size)
的torch.FloatTensor
,可选)— 可选地,您可以选择直接传递嵌入表示,而不是传递input_ids
。如果您想要更多控制如何将input_ids
索引转换为相关向量,而不是使用模型的内部嵌入查找矩阵,这将非常有用。encoder_hidden_states
(形状为(batch_size, sequence_length, hidden_size)
的torch.FloatTensor
,可选)— 编码器最后一层的隐藏状态序列。如果模型配置为解码器,则在交叉注意力中使用。encoder_attention_mask
(形状为(batch_size, sequence_length)
的torch.FloatTensor
,可选)— 用于避免在编码器输入的填充标记索引上执行注意力的掩码。如果模型配置为解码器,则在交叉注意力中使用。掩码值选择在[0, 1]
之间:
- 1 表示头部未被“掩盖”,
- 0 表示头部被“掩盖”。
output_attentions
(bool
,可选)— 是否返回所有注意力层的注意力张量。有关更多详细信息,请参阅返回张量下的attentions
。output_hidden_states
(bool
,可选)— 是否返回所有层的隐藏状态。有关更多详细信息,请参阅返回张量下的hidden_states
。return_dict
(bool
,可选)- 是否返回 ModelOutput 而不是普通元组。start_positions
(形状为(batch_size,)
的torch.LongTensor
,可选)- 用于计算标记跨度的起始位置(索引)的标签。位置被夹在序列的长度(sequence_length
)上。序列外的位置不会计入损失的计算。end_positions
(形状为(batch_size,)
的torch.LongTensor
,可选)- 用于计算标记跨度的结束位置(索引)的标签。位置被夹在序列的长度(sequence_length
)上。序列外的位置不会计入损失的计算。
返回
transformers.modeling_outputs.QuestionAnsweringModelOutput 或tuple(torch.FloatTensor)
一个 transformers.modeling_outputs.QuestionAnsweringModelOutput 或一个torch.FloatTensor
元组(如果传递return_dict=False
或config.return_dict=False
时)包含根据配置(ElectraConfig)和输入的不同元素。
loss
(形状为(1,)
的torch.FloatTensor
,可选,当提供labels
时返回)- 总跨度提取损失是起始和结束位置的交叉熵之和。start_logits
(形状为(batch_size, sequence_length)
的torch.FloatTensor
)- 跨度起始分数(SoftMax 之前)。end_logits
(形状为(batch_size, sequence_length)
的torch.FloatTensor
)- 跨度结束分数(SoftMax 之前)。hidden_states
(tuple(torch.FloatTensor)
,可选,当传递output_hidden_states=True
或config.output_hidden_states=True
时返回)- 形状为(batch_size, sequence_length, hidden_size)
的torch.FloatTensor
元组(如果模型具有嵌入层的输出,则为嵌入的输出加上每一层的输出)。
模型在每一层输出处的隐藏状态加上可选的初始嵌入输出。attentions
(tuple(torch.FloatTensor)
,可选,当传递output_attentions=True
或config.output_attentions=True
时返回)- 形状为(batch_size, num_heads, sequence_length, sequence_length)
的torch.FloatTensor
元组(每层一个)。
注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。
ElectraForQuestionAnswering 前向方法,覆盖__call__
特殊方法。
虽然前向传递的配方需要在此函数内定义,但应该在此之后调用Module
实例,而不是在此处调用,因为前者负责运行预处理和后处理步骤,而后者则默默地忽略它们。
示例:
>>> from transformers import AutoTokenizer, ElectraForQuestionAnswering >>> import torch >>> tokenizer = AutoTokenizer.from_pretrained("bhadresh-savani/electra-base-squad2") >>> model = ElectraForQuestionAnswering.from_pretrained("bhadresh-savani/electra-base-squad2") >>> question, text = "Who was Jim Henson?", "Jim Henson was a nice puppet" >>> inputs = tokenizer(question, text, return_tensors="pt") >>> with torch.no_grad(): ... outputs = model(**inputs) >>> answer_start_index = outputs.start_logits.argmax() >>> answer_end_index = outputs.end_logits.argmax() >>> predict_answer_tokens = inputs.input_ids[0, answer_start_index : answer_end_index + 1] >>> tokenizer.decode(predict_answer_tokens, skip_special_tokens=True) 'a nice puppet' >>> # target is "nice puppet" >>> target_start_index = torch.tensor([11]) >>> target_end_index = torch.tensor([12]) >>> outputs = model(**inputs, start_positions=target_start_index, end_positions=target_end_index) >>> loss = outputs.loss >>> round(loss.item(), 2) 2.64
隐藏 TensorFlow 内容
TFElectraModel
class transformers.TFElectraModel
( config *inputs **kwargs )
参数
config
(ElectraConfig)- 具有模型所有参数的模型配置类。使用配置文件初始化不会加载与模型相关的权重,只会加载配置。查看 from_pretrained()方法以加载模型权重。
裸的 Electra 模型变压器输出原始隐藏状态,没有特定的头部在顶部。与 BERT 模型相同,只是如果隐藏大小和嵌入大小不同,则在嵌入层和编码器之间使用额外的线性层。生成器和鉴别器检查点都可以加载到此模型中。
此模型继承自 TFPreTrainedModel。检查超类文档以获取库为所有模型实现的通用方法(例如下载或保存、调整输入嵌入、修剪头等)。
此模型还是一个tf.keras.Model子类。将其用作常规的 TF 2.0 Keras 模型,并参考 TF 2.0 文档以获取与一般用法和行为相关的所有内容。
transformers
中的 TensorFlow 模型和层接受两种格式的输入:
- 将所有输入作为关键字参数(类似于 PyTorch 模型),或
- 将所有输入作为列表、元组或字典传递给第一个位置参数。
支持第二种格式的原因是 Keras 方法在将输入传递给模型和层时更喜欢这种格式。由于有此支持,当使用model.fit()
等方法时,应该可以“正常工作” - 只需以model.fit()
支持的任何格式传递输入和标签!但是,如果您想在 Keras 方法之外使用第二种格式,例如在使用 KerasFunctional
API 创建自己的层或模型时,有三种可能性可用于收集第一个位置参数中的所有输入张量:
- 只有一个包含
input_ids
的张量,没有其他内容:model(input_ids)
- 按照文档字符串中给定的顺序,一个长度可变的列表,其中包含一个或多个输入张量:
model([input_ids, attention_mask])
或model([input_ids, attention_mask, token_type_ids])
- 一个字典,其中包含与文档字符串中给定的输入名称相关联的一个或多个输入张量:
model({"input_ids": input_ids, "token_type_ids": token_type_ids})
请注意,当使用子类化创建模型和层时,您无需担心这些问题,因为您可以像将输入传递给任何其他 Python 函数一样传递输入!
call
( input_ids: TFModelInputType | None = None attention_mask: np.ndarray | tf.Tensor | None = None token_type_ids: np.ndarray | tf.Tensor | None = None position_ids: np.ndarray | tf.Tensor | None = None head_mask: np.ndarray | tf.Tensor | None = None inputs_embeds: np.ndarray | tf.Tensor | None = None encoder_hidden_states: np.ndarray | tf.Tensor | None = None encoder_attention_mask: np.ndarray | tf.Tensor | None = None past_key_values: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None use_cache: Optional[bool] = None output_attentions: Optional[bool] = None output_hidden_states: Optional[bool] = None return_dict: Optional[bool] = None training: Optional[bool] = False ) → export const metadata = 'undefined';transformers.modeling_tf_outputs.TFBaseModelOutputWithPastAndCrossAttentions or tuple(tf.Tensor)
参数
input_ids
(形状为(batch_size, sequence_length)
的Numpy
数组或tf.Tensor
)- 词汇表中输入序列标记的索引。
可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.call
()和 PreTrainedTokenizer.encode()。
什么是输入 ID?attention_mask
(形状为(batch_size, sequence_length)
的Numpy
数组或tf.Tensor
,可选)- 用于避免在填充标记索引上执行注意力的掩码。掩码值在[0, 1]
中选择:
- 对于未被屏蔽的标记为
1
, - 对于被屏蔽的标记为
0
。
- 什么是注意力掩码?
position_ids
(形状为(batch_size, sequence_length)
的Numpy
数组或tf.Tensor
,可选)- 输入序列标记在位置嵌入中的位置的索引。在范围[0, config.max_position_embeddings - 1]
中选择。
什么是位置 ID?head_mask
(形状为(num_heads,)
或(num_layers, num_heads)
的Numpy
数组或tf.Tensor
,可选)- 用于使自注意力模块中的选定头部失效的掩码。掩码值在[0, 1]
中选择:
- 1 表示头部未被遮蔽,
- 0 表示头部被遮蔽。
inputs_embeds
(形状为(batch_size, sequence_length, hidden_size)
的tf.Tensor
,可选)— 可选地,可以直接传递嵌入表示而不是传递input_ids
。如果您想要更多控制如何将input_ids
索引转换为相关向量,而不是模型的内部嵌入查找矩阵,则这很有用。output_attentions
(bool
,可选)— 是否返回所有注意力层的注意力张量。有关更多详细信息,请参见返回张量下的attentions
。此参数仅在急切模式下可用,在图模式中将使用配置中的值。output_hidden_states
(bool
,可选)— 是否返回所有层的隐藏状态。有关更多详细信息,请参见返回张量下的hidden_states
。此参数仅在急切模式下可用,在图模式中将使用配置中的值。return_dict
(bool
,可选)— 是否返回 ModelOutput 而不是普通元组。此参数可在急切模式中使用,在图模式中该值将始终设置为 True。training
(bool
,可选,默认为False
)— 是否在训练模式下使用模型(一些模块如 dropout 模块在训练和评估之间有不同的行为)。encoder_hidden_states
(形状为(batch_size, sequence_length, hidden_size)
的tf.Tensor
,可选)— 编码器最后一层的隐藏状态序列。如果模型配置为解码器,则在交叉注意力中使用。encoder_attention_mask
(形状为(batch_size, sequence_length)
的tf.Tensor
,可选)— 避免在编码器输入的填充标记索引上执行注意力的掩码。如果模型配置为解码器,则在交叉注意力中使用此掩码。选择的掩码值为[0, 1]
:
- 1 表示未被遮蔽的标记,
- 0 表示被遮蔽的标记。
past_key_values
(长度为config.n_layers
的Tuple[Tuple[tf.Tensor]]
)— 包含注意力块的预计算键和值隐藏状态。可用于加速解码。如果使用了past_key_values
,用户可以选择仅输入最后的decoder_input_ids
(那些没有将它们的过去键值状态提供给此模型的)形状为(batch_size, 1)
而不是所有形状为(batch_size, sequence_length)
的decoder_input_ids
。use_cache
(bool
,可选,默认为True
)— 如果设置为True
,将返回past_key_values
键值状态,并可用于加速解码(参见past_key_values
)。在训练期间设置为False
,在生成期间设置为True
。
返回
transformers.modeling_tf_outputs.TFBaseModelOutputWithPastAndCrossAttentions 或tuple(tf.Tensor)
transformers.modeling_tf_outputs.TFBaseModelOutputWithPastAndCrossAttentions 或一个tf.Tensor
元组(如果传递了return_dict=False
或config.return_dict=False
时)包含根据配置(ElectraConfig)和输入而异的各种元素。
last_hidden_state
(形状为(batch_size, sequence_length, hidden_size)
的tf.Tensor
)— 模型最后一层的隐藏状态序列输出。
如果使用了past_key_values
,则输出形状为(batch_size, 1, hidden_size)
序列的最后一个隐藏状态。past_key_values
(List[tf.Tensor]
,可选,当传递use_cache=True
或config.use_cache=True
时返回)- 长度为config.n_layers
的tf.Tensor
列表,每个张量的形状为(2, batch_size, num_heads, sequence_length, embed_size_per_head)
。
包含预先计算的隐藏状态(注意力块中的键和值),可用于加速顺序解码(参见past_key_values
输入)。hidden_states
(tuple(tf.FloatTensor)
,可选,当传递output_hidden_states=True
或config.output_hidden_states=True
时返回)- 形状为(batch_size, sequence_length, hidden_size)
的tf.Tensor
元组(一个用于嵌入的输出 + 一个用于每个层的输出)。
每个层输出的模型的隐藏状态加上初始嵌入输出。attentions
(tuple(tf.Tensor)
,可选,当传递output_attentions=True
或config.output_attentions=True
时返回)- 形状为(batch_size, num_heads, sequence_length, sequence_length)
的tf.Tensor
元组(每个层一个)。
在注意力 softmax 之后的注意力权重,用于计算自注意力头中的加权平均值。cross_attentions
(tuple(tf.Tensor)
,可选,当传递output_attentions=True
或config.output_attentions=True
时返回)- 形状为(batch_size, num_heads, sequence_length, sequence_length)
的tf.Tensor
元组(每个层一个)。
解码器的交叉注意力层的注意力权重,在注意力 softmax 之后,用于计算交叉注意力头中的加权平均值。
TFElectraModel 的前向方法,覆盖__call__
特殊方法。
虽然前向传递的步骤需要在此函数内定义,但应该在此之后调用Module
实例,而不是调用此函数,因为前者会处理运行前后处理步骤,而后者会默默地忽略它们。
示例:
>>> from transformers import AutoTokenizer, TFElectraModel >>> import tensorflow as tf >>> tokenizer = AutoTokenizer.from_pretrained("google/electra-small-discriminator") >>> model = TFElectraModel.from_pretrained("google/electra-small-discriminator") >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="tf") >>> outputs = model(inputs) >>> last_hidden_states = outputs.last_hidden_state
TFElectraForPreTraining
class transformers.TFElectraForPreTraining
( config **kwargs )
参数
config
(ElectraConfig)- 包含模型所有参数的模型配置类。使用配置文件初始化不会加载与模型关联的权重,只加载配置。查看 from_pretrained()方法以加载模型权重。
Electra 模型在顶部带有二元分类头,用于在预训练期间识别生成的标记。
尽管鉴别器和生成器都可以加载到这个模型中,但鉴别器是两者中唯一具有正确分类头用于此模型的模型。
这个模型继承自 TFPreTrainedModel。查看超类文档以获取库实现的所有模型的通用方法(例如下载或保存,调整输入嵌入大小,修剪头等)。
这个模型也是一个tf.keras.Model子类。将其用作常规的 TF 2.0 Keras 模型,并参考 TF 2.0 文档以获取与一般用法和行为相关的所有信息。
transformers
中的 TensorFlow 模型和层接受两种格式的输入:
- 将所有输入作为关键字参数(类似于 PyTorch 模型),或
- 将所有输入作为列表、元组或字典放在第一个位置参数中。
第二种格式得到支持的原因是,当将输入传递给模型和层时,Keras 方法更喜欢这种格式。由于这种支持,在使用诸如model.fit()
之类的方法时,对您来说应该“只需工作” - 只需以model.fit()
支持的任何格式传递您的输入和标签!但是,如果您想在 Keras 方法之外使用第二种格式,例如在使用 KerasFunctional
API 创建自己的层或模型时,有三种可能性可以用来收集所有输入张量在第一个位置参数中:
- 只有
input_ids
的单个张量,没有其他内容:model(input_ids)
- 一个长度不同的列表,其中包含一个或多个输入张量,按照文档字符串中给定的顺序:
model([input_ids, attention_mask])
或model([input_ids, attention_mask, token_type_ids])
- 一个字典,其中包含一个或多个与文档字符串中给定的输入名称相关联的输入张量:
model({"input_ids": input_ids, "token_type_ids": token_type_ids})
请注意,当使用子类化创建模型和层时,您无需担心这些问题,因为您可以像对待任何其他 Python 函数一样传递输入!
call
( input_ids: TFModelInputType | None = None attention_mask: np.ndarray | tf.Tensor | None = None token_type_ids: np.ndarray | tf.Tensor | None = None position_ids: np.ndarray | tf.Tensor | None = None head_mask: np.ndarray | tf.Tensor | None = None inputs_embeds: np.ndarray | tf.Tensor | None = None output_attentions: Optional[bool] = None output_hidden_states: Optional[bool] = None return_dict: Optional[bool] = None training: Optional[bool] = False ) → export const metadata = 'undefined';transformers.models.electra.modeling_tf_electra.TFElectraForPreTrainingOutput or tuple(tf.Tensor)
参数
input_ids
(形状为(batch_size, sequence_length)
的Numpy
数组或tf.Tensor
)- 词汇表中输入序列标记的索引。
可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.call
()和 PreTrainedTokenizer.encode()。
什么是输入 ID?attention_mask
(形状为(batch_size, sequence_length)
的Numpy
数组或tf.Tensor
,可选)- 用于避免在填充标记索引上执行注意力的掩码。在[0, 1]
中选择的掩码值:
- 1 表示
未屏蔽
的标记, - 0 表示
被屏蔽
的标记。
- 什么是注意力掩码?
position_ids
(形状为(batch_size, sequence_length)
的Numpy
数组或tf.Tensor
,可选)- 每个输入序列标记的位置的索引在位置嵌入中。在范围[0, config.max_position_embeddings - 1]
中选择。
什么是位置 ID?head_mask
(形状为(num_heads,)
或(num_layers, num_heads)
的Numpy
数组或tf.Tensor
,可选)- 用于使自注意力模块中选择的头部失效的掩码。在[0, 1]
中选择的掩码值:
- 1 表示头部
未被屏蔽
, - 0 表示头部
被屏蔽
。
inputs_embeds
(形状为(batch_size, sequence_length, hidden_size)
的tf.Tensor
,可选)- 可选地,您可以选择直接传递嵌入表示,而不是传递input_ids
。如果您想要更多控制权来将input_ids
索引转换为相关向量,而不是使用模型的内部嵌入查找矩阵,这将非常有用。output_attentions
(bool
,可选)- 是否返回所有注意力层的注意力张量。有关更多详细信息,请参阅返回张量下的attentions
。此参数仅在急切模式下使用,在图模式下将使用配置中的值。output_hidden_states
(bool
,可选)- 是否返回所有层的隐藏状态。有关更多详细信息,请参阅返回张量下的hidden_states
。此参数仅在急切模式下使用,在图模式下将使用配置中的值。return_dict
(bool
,可选) — 是否返回 ModelOutput 而不是普通元组。这个参数可以在急切模式下使用,在图模式下该值将始终设置为 True。training
(bool
,可选,默认为False
) — 是否在训练模式下使用模型(一些模块如 dropout 模块在训练和评估之间有不同的行为)。
返回
transformers.models.electra.modeling_tf_electra.TFElectraForPreTrainingOutput 或tuple(tf.Tensor)
一个 transformers.models.electra.modeling_tf_electra.TFElectraForPreTrainingOutput 或一个tf.Tensor
元组(如果传递return_dict=False
或config.return_dict=False
)包含根据配置(ElectraConfig)和输入的不同元素。
loss
(可选,当提供labels
时返回,形状为(1,)
的tf.Tensor
) — ELECTRA 目标的总损失。logits
(形状为(batch_size, sequence_length)
的tf.Tensor
) — 头部的预测分数(SoftMax 之前每个标记的分数)。hidden_states
(tuple(tf.Tensor)
,可选,当传递output_hidden_states=True
或config.output_hidden_states=True
时返回) — 形状为(batch_size, sequence_length, hidden_size)
的tf.Tensor
元组(一个用于嵌入的输出 + 一个用于每个层的输出)。
每层模型的隐藏状态加上初始嵌入输出。attentions
(tuple(tf.Tensor)
,可选,当传递output_attentions=True
或config.output_attentions=True
时返回) — 形状为(batch_size, num_heads, sequence_length, sequence_length)
的tf.Tensor
元组(每层一个)。
在注意力 softmax 之后的注意力权重,用于计算自注意力头中的加权平均值。
TFElectraForPreTraining 的前向方法,覆盖了__call__
特殊方法。
尽管前向传递的步骤需要在此函数内定义,但应该在此之后调用Module
实例而不是这个,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。
示例:
>>> import tensorflow as tf >>> from transformers import AutoTokenizer, TFElectraForPreTraining >>> tokenizer = AutoTokenizer.from_pretrained("google/electra-small-discriminator") >>> model = TFElectraForPreTraining.from_pretrained("google/electra-small-discriminator") >>> input_ids = tf.constant(tokenizer.encode("Hello, my dog is cute"))[None, :] # Batch size 1 >>> outputs = model(input_ids) >>> scores = outputs[0]
Transformers 4.37 中文文档(三十)(6)https://developer.aliyun.com/article/1564678