Transformers 4.37 中文文档(三十)(5)https://developer.aliyun.com/article/1564676
TFElectraForMaskedLM
class transformers.TFElectraForMaskedLM
( config **kwargs )
参数
config
(ElectraConfig) — 具有模型所有参数的模型配置类。使用配置文件初始化不会加载与模型关联的权重,只加载配置。查看 from_pretrained()方法以加载模型权重。
在顶部有一个语言建模头的 Electra 模型。
尽管鉴别器和生成器都可以加载到这个模型中,但生成器是这两个模型中唯一为掩码语言建模任务训练过的模型。
这个模型继承自 TFPreTrainedModel。查看超类文档以了解库实现的所有模型的通用方法(例如下载或保存、调整输入嵌入、修剪头等)。
此模型也是tf.keras.Model子类。将其用作常规 TF 2.0 Keras 模型,并参考 TF 2.0 文档以获取与一般用法和行为相关的所有内容。
transformers
中的 TensorFlow 模型和层接受两种格式的输入:
- 将所有输入作为关键字参数(类似于 PyTorch 模型),或
- 将所有输入作为列表、元组或字典放在第一个位置参数中。
支持第二种格式的原因是 Keras 方法在将输入传递给模型和层时更喜欢这种格式。由于这种支持,当使用model.fit()
等方法时,应该“只需工作” - 只需以model.fit()
支持的任何格式传递输入和标签!但是,如果您想在 Keras 方法之外使用第二种格式,比如在使用 KerasFunctional
API 创建自己的层或模型时,有三种可能性可以用来收集第一个位置参数中的所有输入张量:
- 一个仅包含
input_ids
的单个张量,没有其他内容:model(input_ids)
- 一个长度可变的列表,其中包含一个或多个输入张量,按照文档字符串中给定的顺序:
model([input_ids, attention_mask])
或model([input_ids, attention_mask, token_type_ids])
- 一个字典,其中包含与文档字符串中给定的输入名称相关联的一个或多个输入张量:
model({"input_ids": input_ids, "token_type_ids": token_type_ids})
请注意,当使用子类化创建模型和层时,您无需担心这些问题,因为您可以像对待任何其他 Python 函数一样传递输入!
调用
( input_ids: TFModelInputType | None = None attention_mask: np.ndarray | tf.Tensor | None = None token_type_ids: np.ndarray | tf.Tensor | None = None position_ids: np.ndarray | tf.Tensor | None = None head_mask: np.ndarray | tf.Tensor | None = None inputs_embeds: np.ndarray | tf.Tensor | None = None output_attentions: Optional[bool] = None output_hidden_states: Optional[bool] = None return_dict: Optional[bool] = None labels: np.ndarray | tf.Tensor | None = None training: Optional[bool] = False ) → export const metadata = 'undefined';transformers.modeling_tf_outputs.TFMaskedLMOutput or tuple(tf.Tensor)
参数
input_ids
(形状为(batch_size, sequence_length)
的Numpy
数组或tf.Tensor
)- 词汇表中输入序列令牌的索引。
可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.call
()和 PreTrainedTokenizer.encode()。
什么是输入 ID?attention_mask
(形状为(batch_size, sequence_length)
的Numpy
数组或tf.Tensor
,可选)- 用于避免在填充令牌索引上执行注意力的掩码。在[0, 1]
中选择的掩码值:
- 1 表示未被“掩码”的令牌,
- 对于被“掩码”的令牌为 0。
- 什么是注意力掩码?
position_ids
(形状为(batch_size, sequence_length)
的Numpy
数组或tf.Tensor
,可选)- 每个输入序列令牌在位置嵌入中的位置索引。在范围[0, config.max_position_embeddings - 1]
中选择。
什么是位置 ID?head_mask
(形状为(num_heads,)
或(num_layers, num_heads)
的Numpy
数组或tf.Tensor
,可选)- 用于使自注意力模块的选定头部失效的掩码。在[0, 1]
中选择的掩码值:
- 1 表示头部未被“掩码”,
- 0 表示头部被“掩码”。
inputs_embeds
(形状为(batch_size, sequence_length, hidden_size)
的tf.Tensor
,可选)- 可选地,您可以选择直接传递嵌入表示,而不是传递input_ids
。如果您想要更多控制权来将input_ids
索引转换为相关向量,而不是模型的内部嵌入查找矩阵,则这很有用。output_attentions
(bool
,可选) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参阅返回张量下的attentions
。此参数仅在急切模式下使用,在图模式下将使用配置中的值。output_hidden_states
(bool
,可选) — 是否返回所有层的隐藏状态。有关更多详细信息,请参阅返回张量下的hidden_states
。此参数仅在急切模式下使用,在图模式下将使用配置中的值。return_dict
(bool
,可选) — 是否返回一个 ModelOutput 而不是一个普通元组。此参数可以在急切模式下使用,在图模式下该值将始终设置为 True。training
(bool
,可选,默认为False
) — 是否在训练模式下使用模型(一些模块如 dropout 模块在训练和评估之间有不同的行为)。labels
(形状为
(batch_size, sequence_length)的
tf.Tensor,*可选*) — 用于计算掩码语言建模损失的标签。索引应在
[-100, 0, …, config.vocab_size]内(参见
input_ids文档字符串)。索引设置为
-100的标记将被忽略(屏蔽),损失仅计算具有标签在
[0, …, config.vocab_size]`内的标记。
返回
transformers.modeling_tf_outputs.TFMaskedLMOutput 或tuple(tf.Tensor)
一个 transformers.modeling_tf_outputs.TFMaskedLMOutput 或一个tf.Tensor
元组(如果传递return_dict=False
或config.return_dict=False
)包含根据配置(ElectraConfig)和输入的各种元素。
损失
(形状为
(n,)的
tf.Tensor,*可选*,当提供
labels`时返回,其中 n 是未屏蔽标签的数量) — 掩码语言建模(MLM)损失。logits
(形状为
(batch_size, sequence_length, config.vocab_size)的
tf.Tensor`) — 语言建模头的预测分数(SoftMax 之前每个词汇标记的分数)。hidden_states
(tuple(tf.Tensor)
,可选,当传递output_hidden_states=True
或config.output_hidden_states=True
时返回) — 形状为(batch_size, sequence_length, hidden_size)
的tf.Tensor
元组(一个用于嵌入的输出 + 一个用于每个层的输出)。
模型在每个层的输出处的隐藏状态加上初始嵌入输出。attentions
(tuple(tf.Tensor)
,可选,当传递output_attentions=True
或config.output_attentions=True
时返回) — 形状为(batch_size, num_heads, sequence_length, sequence_length)
的tf.Tensor
元组(每层一个)。
注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。
TFElectraForMaskedLM 的前向方法,覆盖了__call__
特殊方法。
虽然前向传递的步骤需要在此函数内定义,但应该在此之后调用Module
实例而不是这个,因为前者负责运行预处理和后处理步骤,而后者则默默地忽略它们。
示例:
>>> from transformers import AutoTokenizer, TFElectraForMaskedLM >>> import tensorflow as tf >>> tokenizer = AutoTokenizer.from_pretrained("google/electra-small-generator") >>> model = TFElectraForMaskedLM.from_pretrained("google/electra-small-generator") >>> inputs = tokenizer("The capital of France is [MASK].", return_tensors="tf") >>> logits = model(**inputs).logits >>> # retrieve index of [MASK] >>> mask_token_index = tf.where((inputs.input_ids == tokenizer.mask_token_id)[0]) >>> selected_logits = tf.gather_nd(logits[0], indices=mask_token_index) >>> predicted_token_id = tf.math.argmax(selected_logits, axis=-1) >>> tokenizer.decode(predicted_token_id) 'paris'
>>> labels = tokenizer("The capital of France is Paris.", return_tensors="tf")["input_ids"] >>> # mask labels of non-[MASK] tokens >>> labels = tf.where(inputs.input_ids == tokenizer.mask_token_id, labels, -100) >>> outputs = model(**inputs, labels=labels) >>> round(float(outputs.loss), 2) 1.22
TFElectraForSequenceClassification
class transformers.TFElectraForSequenceClassification
( config *inputs **kwargs )
参数
config
(ElectraConfig)- 具有模型所有参数的模型配置类。使用配置文件初始化不会加载与模型关联的权重,只加载配置。查看 from_pretrained()方法以加载模型权重。
ELECTRA 模型变压器,顶部带有序列分类/回归头(池化输出的线性层),例如用于 GLUE 任务。
此模型继承自 TFPreTrainedModel。检查超类文档以获取库为所有模型实现的通用方法(例如下载或保存、调整输入嵌入、修剪头等)。
此模型还是一个tf.keras.Model子类。将其用作常规的 TF 2.0 Keras 模型,并参考 TF 2.0 文档以获取与一般用法和行为相关的所有内容。
transformers
中的 TensorFlow 模型和层接受两种格式的输入:
- 将所有输入作为关键字参数(类似于 PyTorch 模型),或
- 将所有输入作为列表、元组或字典放在第一个位置参数中。
支持第二种格式的原因是 Keras 方法在将输入传递给模型和层时更喜欢这种格式。由于有了这种支持,当使用model.fit()
等方法时,您应该可以“轻松使用” - 只需以model.fit()
支持的任何格式传递输入和标签!但是,如果您想在 Keras 方法之外使用第二种格式,例如在使用 Keras Functional
API 创建自己的层或模型时,有三种可能性可用于收集第一个位置参数中的所有输入张量:
- 一个只有
input_ids
的单个张量,没有其他内容:model(input_ids)
- 一个长度不定的列表,其中包含一个或多个按照文档字符串中给定顺序的输入张量:
model([input_ids, attention_mask])
或model([input_ids, attention_mask, token_type_ids])
- 一个字典,其中包含一个或多个与文档字符串中给定输入名称相关联的输入张量:
model({"input_ids": input_ids, "token_type_ids": token_type_ids})
请注意,当使用子类化创建模型和层时,您无需担心任何这些内容,因为您可以像对待任何其他 Python 函数一样传递输入!
call
( input_ids: TFModelInputType | None = None attention_mask: np.ndarray | tf.Tensor | None = None token_type_ids: np.ndarray | tf.Tensor | None = None position_ids: np.ndarray | tf.Tensor | None = None head_mask: np.ndarray | tf.Tensor | None = None inputs_embeds: np.ndarray | tf.Tensor | None = None output_attentions: Optional[bool] = None output_hidden_states: Optional[bool] = None return_dict: Optional[bool] = None labels: np.ndarray | tf.Tensor | None = None training: Optional[bool] = False ) → export const metadata = 'undefined';transformers.modeling_tf_outputs.TFSequenceClassifierOutput or tuple(tf.Tensor)
参数
input_ids
(形状为(batch_size, sequence_length)
的Numpy
数组或tf.Tensor
)- 词汇表中输入序列标记的索引。
可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.call
()和 PreTrainedTokenizer.encode()。
什么是输入 ID?attention_mask
(形状为(batch_size, sequence_length)
的Numpy
数组或tf.Tensor
,可选)- 避免在填充标记索引上执行注意力的掩码。掩码值选择在[0, 1]
中:
- 对于未被“掩盖”的标记为 1,
- 对于被“掩盖”的标记为 0。
- 什么是注意力掩码?
position_ids
(形状为(batch_size, sequence_length)
的Numpy
数组或tf.Tensor
,可选)- 每个输入序列标记在位置嵌入中的位置索引。在范围[0, config.max_position_embeddings - 1]
中选择。
什么是位置 ID?head_mask
(Numpy 数组
或tf.Tensor
的形状为(num_heads,)
或(num_layers, num_heads)
,可选) — 用于使自注意力模块的选定头部失效的掩码。掩码值选定在[0, 1]
:
- 1 表示头部未被
掩码
。 - 0 表示头部被
掩码
。
inputs_embeds
(tf.Tensor
的形状为(batch_size, sequence_length, hidden_size)
,可选) — 可选地,您可以选择直接传递嵌入表示,而不是传递input_ids
。如果您想要更多控制如何将input_ids
索引转换为相关向量,而不是使用模型的内部嵌入查找矩阵,则这很有用。output_attentions
(bool
, 可选) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参阅返回张量中的attentions
。此参数仅在急切模式下使用,在图模式下将使用配置中的值。output_hidden_states
(bool
, 可选) — 是否返回所有层的隐藏状态。有关更多详细信息,请参阅返回张量中的hidden_states
。此参数仅在急切模式下使用,在图模式下将使用配置中的值。return_dict
(bool
, 可选) — 是否返回 ModelOutput 而不是普通元组。此参数可以在急切模式下使用,在图模式下该值将始终设置为 True。training
(bool
, 可选,默认为False
) — 是否在训练模式下使用模型(一些模块如 dropout 模块在训练和评估之间有不同的行为)。labels
(tf.Tensor
的形状为(batch_size,)
,可选) — 用于计算序列分类/回归损失的标签。索引应在[0, ..., config.num_labels - 1]
。如果config.num_labels == 1
,则计算回归损失(均方损失),如果config.num_labels > 1
,则计算分类损失(交叉熵)。
返回
transformers.modeling_tf_outputs.TFSequenceClassifierOutput 或 tuple(tf.Tensor)
一个 transformers.modeling_tf_outputs.TFSequenceClassifierOutput 或一个 tf.Tensor
元组(如果传递了 return_dict=False
或当 config.return_dict=False
时)包含根据配置(ElectraConfig)和输入而异的各种元素。
损失
(tf.Tensor
的形状为(batch_size, )
,可选,在提供labels
时返回) — 分类(如果config.num_labels==1
则为回归)损失。logits
(tf.Tensor
的形状为(batch_size, config.num_labels)
) — 分类(如果config.num_labels==1
则为回归)得分(SoftMax 之前)。hidden_states
(tuple(tf.Tensor)
,可选,在传递output_hidden_states=True
或当config.output_hidden_states=True
时返回) — 形状为(batch_size, sequence_length, hidden_size)
的tf.Tensor
元组(一个用于嵌入的输出 + 一个用于每一层的输出)。
模型在每一层输出处的隐藏状态以及初始嵌入输出。attentions
(tuple(tf.Tensor)
,可选,在传递output_attentions=True
或当config.output_attentions=True
时返回) — 形状为(batch_size, num_heads, sequence_length, sequence_length)
的tf.Tensor
元组(每一层一个)。
在注意力 softmax 之后的注意力权重,用于计算自注意力头中的加权平均值。
TFElectraForSequenceClassification 的前向方法,覆盖 __call__
特殊方法。
虽然前向传递的步骤需要在此函数内定义,但应该在之后调用Module
实例,而不是在此处调用,因为前者会负责运行预处理和后处理步骤,而后者会默默地忽略它们。
示例:
>>> from transformers import AutoTokenizer, TFElectraForSequenceClassification >>> import tensorflow as tf >>> tokenizer = AutoTokenizer.from_pretrained("bhadresh-savani/electra-base-emotion") >>> model = TFElectraForSequenceClassification.from_pretrained("bhadresh-savani/electra-base-emotion") >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="tf") >>> logits = model(**inputs).logits >>> predicted_class_id = int(tf.math.argmax(logits, axis=-1)[0]) >>> model.config.id2label[predicted_class_id] 'joy'
>>> # To train a model on `num_labels` classes, you can pass `num_labels=num_labels` to `.from_pretrained(...)` >>> num_labels = len(model.config.id2label) >>> model = TFElectraForSequenceClassification.from_pretrained("bhadresh-savani/electra-base-emotion", num_labels=num_labels) >>> labels = tf.constant(1) >>> loss = model(**inputs, labels=labels).loss >>> round(float(loss), 2) 0.06
TFElectraForMultipleChoice
class transformers.TFElectraForMultipleChoice
( config *inputs **kwargs )
参数
config
(ElectraConfig)- 具有模型所有参数的模型配置类。使用配置文件初始化不会加载与模型关联的权重,只会加载配置。查看 from_pretrained()方法以加载模型权重。
在顶部具有多选分类头部的 ELECTRA 模型(在池化输出的顶部有一个线性层和一个 softmax),例如用于 RocStories/SWAG 任务。
此模型继承自 TFPreTrainedModel。查看超类文档以获取库为所有模型实现的通用方法(如下载或保存、调整输入嵌入、修剪头等)。
这个模型也是一个tf.keras.Model子类。将其用作常规的 TF 2.0 Keras 模型,并参考 TF 2.0 文档以获取与一般用法和行为相关的所有信息。
transformers
中的 TensorFlow 模型和层接受两种输入格式:
- 将所有输入作为关键字参数(类似于 PyTorch 模型),或者
- 将所有输入作为列表、元组或字典放在第一个位置参数中。
支持第二种格式的原因是,Keras 方法在将输入传递给模型和层时更喜欢这种格式。由于有了这种支持,当使用model.fit()
等方法时,应该可以“正常工作” - 只需以model.fit()
支持的任何格式传递输入和标签即可!但是,如果您想在 Keras 方法之外(如fit()
和predict()
)使用第二种格式,比如在使用 KerasFunctional
API 创建自己的层或模型时,有三种可能性可以用来收集所有输入张量放在第一个位置参数中:
- 只有一个
input_ids
张量,没有其他内容:model(input_ids)
- 一个长度可变的列表,其中包含一个或多个输入张量,按照文档字符串中给定的顺序:
model([input_ids, attention_mask])
或model([input_ids, attention_mask, token_type_ids])
- 一个字典,其中包含一个或多个与文档字符串中给定的输入名称相关联的输入张量:
model({"input_ids": input_ids, "token_type_ids": token_type_ids})
请注意,当使用子类化创建模型和层时,您无需担心这些内容,因为您可以像对待任何其他 Python 函数一样传递输入!
调用
( input_ids: TFModelInputType | None = None attention_mask: np.ndarray | tf.Tensor | None = None token_type_ids: np.ndarray | tf.Tensor | None = None position_ids: np.ndarray | tf.Tensor | None = None head_mask: np.ndarray | tf.Tensor | None = None inputs_embeds: np.ndarray | tf.Tensor | None = None output_attentions: Optional[bool] = None output_hidden_states: Optional[bool] = None return_dict: Optional[bool] = None labels: np.ndarray | tf.Tensor | None = None training: Optional[bool] = False ) → export const metadata = 'undefined';transformers.modeling_tf_outputs.TFMultipleChoiceModelOutput or tuple(tf.Tensor)
参数
input_ids
(形状为(batch_size, num_choices, sequence_length)
的Numpy
数组或tf.Tensor
)- 词汇表中输入序列标记的索引。
可以使用 AutoTokenizer 获取索引。查看 PreTrainedTokenizer.call
()和 PreTrainedTokenizer.encode()获取详细信息。
什么是输入 ID?attention_mask
(Numpy array
或形状为(batch_size, num_choices, sequence_length)
的tf.Tensor
,可选) — 避免在填充标记索引上执行注意力的掩码。掩码值选定在[0, 1]
内:
- 1 用于未被“掩码”的标记。
- 对于被“掩码”(masked)的标记。
- 什么是注意力掩码?
position_ids
(Numpy array
或形状为(batch_size, num_choices, sequence_length)
的tf.Tensor
,可选) — 每个输入序列标记在位置嵌入中的位置索引。选定范围为[0, config.max_position_embeddings - 1]
。
什么是位置 ID?head_mask
(Numpy array
或形状为(num_heads,)
或(num_layers, num_heads)
的tf.Tensor
,可选) — 用于使自注意力模块中选定头部失效的掩码。掩码值选定在[0, 1]
内:
- 1 表示头部未被“掩码”。
- 0 表示头部被“掩码”。
inputs_embeds
(形状为(batch_size, num_choices, sequence_length, hidden_size)
的tf.Tensor
,可选) — 可选地,您可以直接传递嵌入表示而不是传递input_ids
。如果您想要更多控制如何将input_ids
索引转换为相关向量,这将很有用,而不是使用模型的内部嵌入查找矩阵。output_attentions
(bool
,可选) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参见返回张量下的attentions
。此参数仅在急切模式下使用,在图模式下将使用配置中的值。output_hidden_states
(bool
,可选) — 是否返回所有层的隐藏状态。有关更多详细信息,请参见返回张量下的hidden_states
。此参数仅在急切模式下使用,在图模式下将使用配置中的值。return_dict
(bool
,可选) — 是否返回 ModelOutput 而不是普通元组。此参数可在急切模式下使用,在图模式下该值将始终设置为 True。training
(bool
,可选,默认为False
) — 是否在训练模式下使用模型(一些模块如 dropout 模块在训练和评估之间有不同的行为)。labels
(形状为(batch_size,)
的tf.Tensor
,可选) — 用于计算多项选择分类损失的标签。索引应在[0, ..., num_choices]
内,其中num_choices
是输入张量的第二维度的大小。(参见上面的input_ids
)。
返回
transformers.modeling_tf_outputs.TFMultipleChoiceModelOutput 或tuple(tf.Tensor)
一个 transformers.modeling_tf_outputs.TFMultipleChoiceModelOutput 或一个tf.Tensor
元组(如果传递return_dict=False
或config.return_dict=False
)包含各种元素,取决于配置(ElectraConfig)和输入。
loss
(形状为*(batch_size, )*的tf.Tensor
,可选,当提供labels
时返回) — 分类损失。logits
(形状为(batch_size, num_choices)
的tf.Tensor
) — num_choices是输入张量的第二维度。(参见上面的input_ids)。
分类得分(SoftMax 之前)。hidden_states
(tuple(tf.Tensor)
,可选,当传递output_hidden_states=True
或config.output_hidden_states=True
时返回) — 形状为(batch_size, sequence_length, hidden_size)
的tf.Tensor
元组(一个用于嵌入的输出 + 一个用于每一层的输出)。
模型在每一层输出的隐藏状态加上初始嵌入输出。attentions
(tuple(tf.Tensor)
,可选,当传递output_attentions=True
或config.output_attentions=True
时返回)—形状为(batch_size, num_heads, sequence_length, sequence_length)
的tf.Tensor
元组。
在注意力 softmax 之后的注意力权重,用于计算自注意力头中的加权平均值。
TFElectraForMultipleChoice 的前向方法覆盖了__call__
特殊方法。
虽然前向传递的步骤需要在此函数内定义,但应该在此之后调用Module
实例,而不是在此处调用,因为前者会负责运行预处理和后处理步骤,而后者会默默地忽略它们。
示例:
>>> from transformers import AutoTokenizer, TFElectraForMultipleChoice >>> import tensorflow as tf >>> tokenizer = AutoTokenizer.from_pretrained("google/electra-small-discriminator") >>> model = TFElectraForMultipleChoice.from_pretrained("google/electra-small-discriminator") >>> prompt = "In Italy, pizza served in formal settings, such as at a restaurant, is presented unsliced." >>> choice0 = "It is eaten with a fork and a knife." >>> choice1 = "It is eaten while held in the hand." >>> encoding = tokenizer([prompt, prompt], [choice0, choice1], return_tensors="tf", padding=True) >>> inputs = {k: tf.expand_dims(v, 0) for k, v in encoding.items()} >>> outputs = model(inputs) # batch size is 1 >>> # the linear classifier still needs to be trained >>> logits = outputs.logits
TFElectraForTokenClassification
class transformers.TFElectraForTokenClassification
( config **kwargs )
参数
config
(ElectraConfig)—包含模型所有参数的模型配置类。使用配置文件初始化不会加载与模型关联的权重,只会加载配置。查看 from_pretrained()方法以加载模型权重。
在顶部带有标记分类头的 Electra 模型。
鉴别器和生成器都可以加载到这个模型中。
这个模型继承自 TFPreTrainedModel。查看超类文档以了解库实现的所有模型的通用方法(例如下载或保存、调整输入嵌入、修剪头等)。
这个模型也是一个tf.keras.Model子类。将其用作常规的 TF 2.0 Keras 模型,并参考 TF 2.0 文档以获取有关一般用法和行为的所有信息。
transformers
中的 TensorFlow 模型和层接受两种格式的输入:
- 将所有输入作为关键字参数(类似于 PyTorch 模型),或
- 将所有输入作为列表、元组或字典放在第一个位置参数中。
支持第二种格式的原因是 Keras 方法在将输入传递给模型和层时更喜欢这种格式。由于这种支持,当使用model.fit()
等方法时,应该“只需工作” - 只需以model.fit()
支持的任何格式传递输入和标签即可!但是,如果您想在 Keras 方法之外使用第二种格式,例如在使用 KerasFunctional
API 创建自己的层或模型时,有三种可能性可用于收集第一个位置参数中的所有输入张量:
- 只有一个包含
input_ids
的单个张量,没有其他内容:model(input_ids)
- 一个长度可变的列表,其中包含一个或多个按照文档字符串中给定顺序的输入张量:
model([input_ids, attention_mask])
或model([input_ids, attention_mask, token_type_ids])
- 一个包含与文档字符串中给定输入名称相关联的一个或多个输入张量的字典:
model({"input_ids": input_ids, "token_type_ids": token_type_ids})
请注意,当使用子类化创建模型和层时,您无需担心任何这些,因为您可以像对待任何其他 Python 函数一样传递输入!
call
( input_ids: TFModelInputType | None = None attention_mask: np.ndarray | tf.Tensor | None = None token_type_ids: np.ndarray | tf.Tensor | None = None position_ids: np.ndarray | tf.Tensor | None = None head_mask: np.ndarray | tf.Tensor | None = None inputs_embeds: np.ndarray | tf.Tensor | None = None output_attentions: Optional[bool] = None output_hidden_states: Optional[bool] = None return_dict: Optional[bool] = None labels: np.ndarray | tf.Tensor | None = None training: Optional[bool] = False ) → export const metadata = 'undefined';transformers.modeling_tf_outputs.TFTokenClassifierOutput or tuple(tf.Tensor)
参数
input_ids
(形状为(batch_size, sequence_length)
的Numpy
数组或tf.Tensor
)—输入序列标记在词汇表中的索引。
可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.call
() 和 PreTrainedTokenizer.encode()。
什么是输入 ID?attention_mask
(Numpy 数组
或tf.Tensor
,形状为(batch_size, sequence_length)
,optional) — 用于避免在填充标记索引上执行注意力的掩码。选择的掩码值在[0, 1]
中:
- 对于
未被掩码
的标记为 1, - 对于
被掩码
的标记为 0。
- 什么是注意力掩码?
position_ids
(Numpy 数组
或tf.Tensor
,形状为(batch_size, sequence_length)
,optional) — 每个输入序列标记在位置嵌入中的位置索引。在范围[0, config.max_position_embeddings - 1]
中选择。
什么是位置 ID?head_mask
(Numpy 数组
或tf.Tensor
,形状为(num_heads,)
或(num_layers, num_heads)
,optional) — 用于使自注意力模块的选定头部无效的掩码。选择的掩码值在[0, 1]
中:
- 1 表示头部
未被掩码
, - 0 表示头部
被掩码
。
inputs_embeds
(tf.Tensor
,形状为(batch_size, sequence_length, hidden_size)
,optional) — 可选地,可以直接传递嵌入表示而不是传递input_ids
。如果您想要更多控制如何将input_ids
索引转换为相关向量,而不是使用模型的内部嵌入查找矩阵,则这很有用。output_attentions
(bool
, optional) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参阅返回张量下的attentions
。此参数仅在急切模式下使用,在图模式下将使用配置中的值。output_hidden_states
(bool
, optional) — 是否返回所有层的隐藏状态。有关更多详细信息,请参阅返回张量下的hidden_states
。此参数仅在急切模式下使用,在图模式下将使用配置中的值。return_dict
(bool
, optional) — 是否返回 ModelOutput 而不是普通元组。在急切模式下可以使用此参数,在图模式下该值将始终设置为 True。training
(bool
, optional,默认为False
) — 是否在训练模式下使用模型(一些模块如 dropout 模块在训练和评估之间有不同的行为)。labels
(tf.Tensor
,形状为(batch_size, sequence_length)
,optional) — 用于计算标记分类损失的标签。索引应在[0, ..., config.num_labels - 1]
中。
返回
transformers.modeling_tf_outputs.TFTokenClassifierOutput 或 tuple(tf.Tensor)
一个 transformers.modeling_tf_outputs.TFTokenClassifierOutput 或一个 tf.Tensor
元组(如果传递了 return_dict=False
或当 config.return_dict=False
时)包含根据配置(ElectraConfig)和输入的各种元素。
loss
(tf.Tensor
,形状为(n,)
,optional,当提供labels
时返回,其中 n 是未被掩码标签的数量) — 分类损失。logits
(tf.Tensor
,形状为(batch_size, sequence_length, config.num_labels)
) — 分类分数(SoftMax 之前)。hidden_states
(tuple(tf.Tensor)
,可选,当传递output_hidden_states=True
或config.output_hidden_states=True
时返回) - 形状为(batch_size, sequence_length, hidden_size)
的tf.Tensor
元组(一个用于嵌入的输出,一个用于每个层的输出)。
模型在每个层的输出处的隐藏状态加上初始嵌入输出。attentions
(tuple(tf.Tensor)
,可选,当传递output_attentions=True
或config.output_attentions=True
时返回) - 形状为(batch_size, num_heads, sequence_length, sequence_length)
的tf.Tensor
元组(每层一个)。
在注意力 softmax 之后的注意力权重,用于计算自注意力头中的加权平均值。
TFElectraForTokenClassification 的前向方法,覆盖了__call__
特殊方法。
尽管前向传递的方法需要在此函数内定义,但应该在此之后调用Module
实例,而不是这个,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。
示例:
>>> from transformers import AutoTokenizer, TFElectraForTokenClassification >>> import tensorflow as tf >>> tokenizer = AutoTokenizer.from_pretrained("bhadresh-savani/electra-base-discriminator-finetuned-conll03-english") >>> model = TFElectraForTokenClassification.from_pretrained("bhadresh-savani/electra-base-discriminator-finetuned-conll03-english") >>> inputs = tokenizer( ... "HuggingFace is a company based in Paris and New York", add_special_tokens=False, return_tensors="tf" ... ) >>> logits = model(**inputs).logits >>> predicted_token_class_ids = tf.math.argmax(logits, axis=-1) >>> # Note that tokens are classified rather then input words which means that >>> # there might be more predicted token classes than words. >>> # Multiple token classes might account for the same word >>> predicted_tokens_classes = [model.config.id2label[t] for t in predicted_token_class_ids[0].numpy().tolist()] >>> predicted_tokens_classes ['B-LOC', 'B-ORG', 'O', 'O', 'O', 'O', 'O', 'B-LOC', 'O', 'B-LOC', 'I-LOC']
>>> labels = predicted_token_class_ids >>> loss = tf.math.reduce_mean(model(**inputs, labels=labels).loss) >>> round(float(loss), 2) 0.11
Transformers 4.37 中文文档(三十)(7)https://developer.aliyun.com/article/1564679