Transformers 4.37 中文文档(二十七)(3)https://developer.aliyun.com/article/1563737
ConvBertForSequenceClassification
class transformers.ConvBertForSequenceClassification
( config )
参数
config
(ConvBertConfig)-模型的所有参数的模型配置类。使用配置文件初始化不会加载与模型关联的权重,只加载配置。查看 from_pretrained()方法以加载模型权重。
ConvBERT 模型变压器,顶部带有序列分类/回归头(顶部的线性层在池化输出之上),例如用于 GLUE 任务。
此模型是 PyTorch torch.nn.Module子类。将其用作常规 PyTorch 模块,并参考 PyTorch 文档以获取有关一般用法和行为的所有相关信息。
forward
( input_ids: Optional = None attention_mask: Optional = None token_type_ids: Optional = None position_ids: Optional = None head_mask: Optional = None inputs_embeds: Optional = None labels: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None ) → export const metadata = 'undefined';transformers.modeling_outputs.SequenceClassifierOutput or tuple(torch.FloatTensor)
参数
input_ids
(形状为(batch_size, sequence_length)
的torch.LongTensor
)-词汇表中输入序列标记的索引。
可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode()和 PreTrainedTokenizer.call
()。
什么是输入 ID?attention_mask
(形状为(batch_size, sequence_length)
的torch.FloatTensor
,可选)-用于避免在填充标记索引上执行注意力的掩码。掩码值选择在[0, 1]
中:
返回
transformers.modeling_outputs.SequenceClassifierOutput 或tuple(torch.FloatTensor)
一个 transformers.modeling_outputs.SequenceClassifierOutput 或一个torch.FloatTensor
元组(如果传递了return_dict=False
或当config.return_dict=False
时)包含各种元素,具体取决于配置(ConvBertConfig)和输入。
loss
(形状为(1,)
的torch.FloatTensor
,可选,在提供labels
时返回)-分类(如果config.num_labels==1
则为回归)损失。logits
(形状为(batch_size, config.num_labels)
的torch.FloatTensor
)-分类(如果config.num_labels==1
则为回归)分数(SoftMax 之前)。hidden_states
(tuple(torch.FloatTensor)
,可选,在传递output_hidden_states=True
或当config.output_hidden_states=True
时返回)-形状为(batch_size, sequence_length, hidden_size)
的torch.FloatTensor
元组(如果模型具有嵌入层,则为嵌入的输出+每层的输出)。
模型在每一层输出的隐藏状态以及可选的初始嵌入输出。attentions
(tuple(torch.FloatTensor)
, optional, returned whenoutput_attentions=True
is passed or whenconfig.output_attentions=True
) — 每一层的torch.FloatTensor
元组,形状为(batch_size, num_heads, sequence_length, sequence_length)
。
在注意力 softmax 之后的注意力权重,用于计算自注意力头中的加权平均值。
ConvBertForSequenceClassification 的前向方法,覆盖了 __call__
特殊方法。
虽然前向传递的步骤需要在此函数内定义,但应该在此之后调用 Module
实例,而不是在此处调用,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。
单标签分类示例:
>>> import torch >>> from transformers import AutoTokenizer, ConvBertForSequenceClassification >>> tokenizer = AutoTokenizer.from_pretrained("YituTech/conv-bert-base") >>> model = ConvBertForSequenceClassification.from_pretrained("YituTech/conv-bert-base") >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt") >>> with torch.no_grad(): ... logits = model(**inputs).logits >>> predicted_class_id = logits.argmax().item() >>> # To train a model on `num_labels` classes, you can pass `num_labels=num_labels` to `.from_pretrained(...)` >>> num_labels = len(model.config.id2label) >>> model = ConvBertForSequenceClassification.from_pretrained("YituTech/conv-bert-base", num_labels=num_labels) >>> labels = torch.tensor([1]) >>> loss = model(**inputs, labels=labels).loss
多标签分类示例:
>>> import torch >>> from transformers import AutoTokenizer, ConvBertForSequenceClassification >>> tokenizer = AutoTokenizer.from_pretrained("YituTech/conv-bert-base") >>> model = ConvBertForSequenceClassification.from_pretrained("YituTech/conv-bert-base", problem_type="multi_label_classification") >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt") >>> with torch.no_grad(): ... logits = model(**inputs).logits >>> predicted_class_ids = torch.arange(0, logits.shape[-1])[torch.sigmoid(logits).squeeze(dim=0) > 0.5] >>> # To train a model on `num_labels` classes, you can pass `num_labels=num_labels` to `.from_pretrained(...)` >>> num_labels = len(model.config.id2label) >>> model = ConvBertForSequenceClassification.from_pretrained( ... "YituTech/conv-bert-base", num_labels=num_labels, problem_type="multi_label_classification" ... ) >>> labels = torch.sum( ... torch.nn.functional.one_hot(predicted_class_ids[None, :].clone(), num_classes=num_labels), dim=1 ... ).to(torch.float) >>> loss = model(**inputs, labels=labels).loss
ConvBertForMultipleChoice
class transformers.ConvBertForMultipleChoice
( config )
参数
config
(ConvBertConfig) — 具有模型所有参数的模型配置类。使用配置文件初始化不会加载与模型相关的权重,只加载配置。查看 from_pretrained() 方法以加载模型权重。
ConvBERT 模型,顶部带有一个多选分类头部(一个线性层在池化输出的顶部和一个 softmax),例如用于 RocStories/SWAG 任务。
这个模型是一个 PyTorch torch.nn.Module 的子类。将其用作常规的 PyTorch 模块,并参考 PyTorch 文档以获取与一般用法和行为相关的所有内容。
forward
( input_ids: Optional = None attention_mask: Optional = None token_type_ids: Optional = None position_ids: Optional = None head_mask: Optional = None inputs_embeds: Optional = None labels: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None ) → export const metadata = 'undefined';transformers.modeling_outputs.MultipleChoiceModelOutput or tuple(torch.FloatTensor)
参数
input_ids
(torch.LongTensor
,形状为(batch_size, num_choices, sequence_length)
) — 词汇表中输入序列标记的索引。
可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call
()。
什么是输入 ID?attention_mask
(torch.FloatTensor
,形状为(batch_size, num_choices, sequence_length)
,可选) — 用于避免在填充标记索引上执行注意力的掩码。掩码值选在[0, 1]
之间:
返回
transformers.modeling_outputs.MultipleChoiceModelOutput 或 tuple(torch.FloatTensor)
一个 transformers.modeling_outputs.MultipleChoiceModelOutput 或一个 torch.FloatTensor
元组(如果传递了 return_dict=False
或当 config.return_dict=False
时)包含根据配置 (ConvBertConfig) 和输入的各种元素。
loss
(torch.FloatTensor
,形状为 (1,),可选,当提供labels
时返回) — 分类损失。logits
(torch.FloatTensor
,形状为(batch_size, num_choices)
) — num_choices 是输入张量的第二维度。(参见上面的 input_ids)。
分类得分(SoftMax 之前)。hidden_states
(tuple(torch.FloatTensor)
,可选,当传递output_hidden_states=True
或config.output_hidden_states=True
时返回) — 形状为(batch_size, sequence_length, hidden_size)
的torch.FloatTensor
元组(如果模型具有嵌入层,则为嵌入输出的输出 + 每层的输出)。
模型在每一层输出的隐藏状态以及可选的初始嵌入输出。attentions
(tuple(torch.FloatTensor)
,可选,当传递output_attentions=True
或config.output_attentions=True
时返回) — 形状为(batch_size, num_heads, sequence_length, sequence_length)
的torch.FloatTensor
元组(每层一个)。
注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。
ConvBertForMultipleChoice 的前向方法,覆盖了 __call__
特殊方法。
虽然前向传递的步骤需要在此函数内定义,但应该在此之后调用 Module
实例,而不是在此处调用,因为前者会负责运行预处理和后处理步骤,而后者会默默地忽略它们。
示例:
>>> from transformers import AutoTokenizer, ConvBertForMultipleChoice >>> import torch >>> tokenizer = AutoTokenizer.from_pretrained("YituTech/conv-bert-base") >>> model = ConvBertForMultipleChoice.from_pretrained("YituTech/conv-bert-base") >>> prompt = "In Italy, pizza served in formal settings, such as at a restaurant, is presented unsliced." >>> choice0 = "It is eaten with a fork and a knife." >>> choice1 = "It is eaten while held in the hand." >>> labels = torch.tensor(0).unsqueeze(0) # choice0 is correct (according to Wikipedia ;)), batch size 1 >>> encoding = tokenizer([prompt, prompt], [choice0, choice1], return_tensors="pt", padding=True) >>> outputs = model(**{k: v.unsqueeze(0) for k, v in encoding.items()}, labels=labels) # batch size is 1 >>> # the linear classifier still needs to be trained >>> loss = outputs.loss >>> logits = outputs.logits
ConvBertForTokenClassification
class transformers.ConvBertForTokenClassification
( config )
参数
config
(ConvBertConfig) — 具有模型所有参数的模型配置类。使用配置文件初始化不会加载与模型关联的权重,只加载配置。查看 from_pretrained() 方法以加载模型权重。
ConvBERT 模型,顶部带有一个标记分类头(隐藏状态输出的线性层),例如用于命名实体识别(NER)任务。
此模型是 PyTorch torch.nn.Module 的子类。将其用作常规 PyTorch 模块,并参考 PyTorch 文档以获取有关一般用法和行为的所有相关信息。
forward
( input_ids: Optional = None attention_mask: Optional = None token_type_ids: Optional = None position_ids: Optional = None head_mask: Optional = None inputs_embeds: Optional = None labels: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None ) → export const metadata = 'undefined';transformers.modeling_outputs.TokenClassifierOutput or tuple(torch.FloatTensor)
参数
input_ids
(torch.LongTensor
,形状为(batch_size, sequence_length)
) — 词汇表中输入序列标记的索引。
可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call
()。
什么是输入 ID?attention_mask
(torch.FloatTensor
,形状为(batch_size, sequence_length)
,可选) — 用于避免在填充标记索引上执行注意力的掩码。掩码值选在[0, 1]
:
返回
transformers.modeling_outputs.TokenClassifierOutput 或 tuple(torch.FloatTensor)
一个 transformers.modeling_outputs.TokenClassifierOutput 或一个 torch.FloatTensor
元组(如果传递 return_dict=False
或 config.return_dict=False
时)包含根据配置(ConvBertConfig)和输入而异的各种元素。
loss
(torch.FloatTensor
of shape(1,)
,可选,当提供labels
时返回) — 分类损失。logits
(torch.FloatTensor
of shape(batch_size, sequence_length, config.num_labels)
) — 分类得分(SoftMax 之前)。hidden_states
(tuple(torch.FloatTensor)
,可选,当传递output_hidden_states=True
或config.output_hidden_states=True
时返回) — 形状为(batch_size, sequence_length, hidden_size)
的torch.FloatTensor
元组(如果模型有嵌入层,则为嵌入的输出+每个层的输出)。
每层模型的隐藏状态以及可选的初始嵌入输出。attentions
(tuple(torch.FloatTensor)
,可选,当传递output_attentions=True
或config.output_attentions=True
时返回) — 形状为(batch_size, num_heads, sequence_length, sequence_length)
的torch.FloatTensor
元组(每个层一个)。
注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。
ConvBertForTokenClassification 的前向方法,覆盖了__call__
特殊方法。
虽然前向传递的步骤需要在此函数内定义,但应该在此之后调用Module
实例,而不是在此处调用,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。
示例:
>>> from transformers import AutoTokenizer, ConvBertForTokenClassification >>> import torch >>> tokenizer = AutoTokenizer.from_pretrained("YituTech/conv-bert-base") >>> model = ConvBertForTokenClassification.from_pretrained("YituTech/conv-bert-base") >>> inputs = tokenizer( ... "HuggingFace is a company based in Paris and New York", add_special_tokens=False, return_tensors="pt" ... ) >>> with torch.no_grad(): ... logits = model(**inputs).logits >>> predicted_token_class_ids = logits.argmax(-1) >>> # Note that tokens are classified rather then input words which means that >>> # there might be more predicted token classes than words. >>> # Multiple token classes might account for the same word >>> predicted_tokens_classes = [model.config.id2label[t.item()] for t in predicted_token_class_ids[0]] >>> labels = predicted_token_class_ids >>> loss = model(**inputs, labels=labels).loss
ConvBertForQuestionAnswering
class transformers.ConvBertForQuestionAnswering
( config )
参数
config
(ConvBertConfig) — 具有模型所有参数的模型配置类。使用配置文件初始化不会加载与模型关联的权重,只加载配置。查看 from_pretrained()方法以加载模型权重。
ConvBERT 模型,顶部带有一个用于提取式问答任务的跨度分类头,例如 SQuAD(在隐藏状态输出的线性层上计算跨度起始 logits
和跨度结束 logits
)。
该模型是 PyTorch torch.nn.Module子类。将其用作常规 PyTorch 模块,并参考 PyTorch 文档以获取有关一般用法和行为的所有信息。
forward
( input_ids: Optional = None attention_mask: Optional = None token_type_ids: Optional = None position_ids: Optional = None head_mask: Optional = None inputs_embeds: Optional = None start_positions: Optional = None end_positions: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None ) → export const metadata = 'undefined';transformers.modeling_outputs.QuestionAnsweringModelOutput or tuple(torch.FloatTensor)
参数
input_ids
(torch.LongTensor
of shape(batch_size, sequence_length)
) — 词汇表中输入序列标记的索引。
可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode()和 PreTrainedTokenizer.call
()。
什么是输入 ID?attention_mask
(torch.FloatTensor
of shape(batch_size, sequence_length)
,可选) — 避免在填充标记索引上执行注意力的掩码。选择的掩码值在[0, 1]
中:
返回
transformers.modeling_outputs.QuestionAnsweringModelOutput 或tuple(torch.FloatTensor)
一个 transformers.modeling_outputs.QuestionAnsweringModelOutput 或一个torch.FloatTensor
元组(如果传递return_dict=False
或config.return_dict=False
)包含根据配置(ConvBertConfig)和输入的各种元素。
loss
(形状为(1,)
的torch.FloatTensor
,可选,当提供labels
时返回)— 总跨度提取损失是开始和结束位置的交叉熵之和。start_logits
(形状为(batch_size, sequence_length)
的torch.FloatTensor
)— 跨度开始分数(SoftMax 之前)。end_logits
(形状为(batch_size, sequence_length)
的torch.FloatTensor
)— 跨度结束分数(SoftMax 之前)。hidden_states
(tuple(torch.FloatTensor)
,可选,当传递output_hidden_states=True
或config.output_hidden_states=True
时返回)— 形状为(batch_size, sequence_length, hidden_size)
的torch.FloatTensor
元组(用于嵌入的输出,如果模型有一个嵌入层,+ 每层的输出)。
模型在每一层的输出的隐藏状态加上可选的初始嵌入输出。attentions
(tuple(torch.FloatTensor)
,可选,当传递output_attentions=True
或config.output_attentions=True
时返回)— 形状为(batch_size, num_heads, sequence_length, sequence_length)
的torch.FloatTensor
元组(每层一个)。
在自注意力头中用于计算加权平均值的注意力权重在注意力 softmax 之后。
ConvBertForQuestionAnswering 的前向方法,覆盖了__call__
特殊方法。
虽然前向传递的方法需要在此函数内定义,但应该在此之后调用Module
实例,而不是这个,因为前者会负责运行预处理和后处理步骤,而后者会默默地忽略它们。
示例:
>>> from transformers import AutoTokenizer, ConvBertForQuestionAnswering >>> import torch >>> tokenizer = AutoTokenizer.from_pretrained("YituTech/conv-bert-base") >>> model = ConvBertForQuestionAnswering.from_pretrained("YituTech/conv-bert-base") >>> question, text = "Who was Jim Henson?", "Jim Henson was a nice puppet" >>> inputs = tokenizer(question, text, return_tensors="pt") >>> with torch.no_grad(): ... outputs = model(**inputs) >>> answer_start_index = outputs.start_logits.argmax() >>> answer_end_index = outputs.end_logits.argmax() >>> predict_answer_tokens = inputs.input_ids[0, answer_start_index : answer_end_index + 1] >>> # target is "nice puppet" >>> target_start_index = torch.tensor([14]) >>> target_end_index = torch.tensor([15]) >>> outputs = model(**inputs, start_positions=target_start_index, end_positions=target_end_index) >>> loss = outputs.loss
TensorFlow 隐藏 TensorFlow 内容
TFConvBertModel
class transformers.TFConvBertModel
( config *inputs **kwargs )
参数
config
(ConvBertConfig)— 具有模型所有参数的模型配置类。使用配置文件初始化不会加载与模型关联的权重,只会加载配置。查看 from_pretrained()方法以加载模型权重。
裸的 ConvBERT 模型变压器输出原始隐藏状态,没有特定的头部。
这个模型继承自 TFPreTrainedModel。查看超类文档以获取库为所有模型实现的通用方法(如下载或保存、调整输入嵌入、修剪头等)。
这个模型也是一个tf.keras.Model子类。将其用作常规的 TF 2.0 Keras 模型,并参考 TF 2.0 文档以获取与一般用法和行为相关的所有内容。
transformers
中的 TensorFlow 模型和层接受两种格式的输入:
- 将所有输入作为关键字参数(类似于 PyTorch 模型),或
- 将所有输入作为列表、元组或字典放在第一个位置参数中。
支持第二种格式的原因是 Keras 方法在将输入传递给模型和层时更喜欢这种格式。由于有了这种支持,当使用model.fit()
等方法时,应该可以“正常工作” - 只需以model.fit()
支持的任何格式传递输入和标签即可!但是,如果您想在 Keras 方法之外使用第二种格式,例如在使用 KerasFunctional
API 创建自己的层或模型时,有三种可能性可用于在第一个位置参数中收集所有输入张量:
- 一个仅包含
input_ids
的单个张量,没有其他内容:model(input_ids)
- 一个变长列表,其中包含一个或多个输入张量,按照文档字符串中给定的顺序:
model([input_ids, attention_mask])
或model([input_ids, attention_mask, token_type_ids])
- 一个带有一个或多个与文档字符串中给定的输入名称相关联的输入张量的字典:
model({"input_ids": input_ids, "token_type_ids": token_type_ids})
请注意,当使用子类化创建模型和层时,您无需担心这些内容,因为您可以像对待任何其他 Python 函数一样传递输入!
call
( input_ids: TFModelInputType | None = None attention_mask: Optional[Union[np.array, tf.Tensor]] = None token_type_ids: Optional[Union[np.array, tf.Tensor]] = None position_ids: Optional[Union[np.array, tf.Tensor]] = None head_mask: Optional[Union[np.array, tf.Tensor]] = None inputs_embeds: tf.Tensor | None = None output_attentions: Optional[bool] = None output_hidden_states: Optional[bool] = None return_dict: Optional[bool] = None training: bool = False ) → export const metadata = 'undefined';transformers.modeling_tf_outputs.TFBaseModelOutput or tuple(tf.Tensor)
参数
input_ids
(形状为(batch_size, sequence_length)
的Numpy 数组
或tf.Tensor
)- 词汇表中输入序列标记的索引。
可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.call
()和 PreTrainedTokenizer.encode()。
什么是输入 ID?attention_mask
(形状为(batch_size, sequence_length)
的Numpy 数组
或tf.Tensor
,可选)- 用于避免在填充标记索引上执行注意力的掩码。掩码值选定在[0, 1]
之间:
- 1 表示“未被屏蔽”的标记,
- 0 表示“被屏蔽”的标记。
- 什么是注意力掩码?
token_type_ids
(形状为(batch_size, sequence_length)
的Numpy 数组
或tf.Tensor
,可选)- 指示输入的第一部分和第二部分的段标记索引。索引选定在[0, 1]
中:
- 0 对应于句子 A标记,
- 1 对应于句子 B标记。
- 什么是标记类型 ID?
position_ids
(形状为(batch_size, sequence_length)
的Numpy 数组
或tf.Tensor
,可选)- 每个输入序列标记在位置嵌入中的位置索引。在范围[0, config.max_position_embeddings - 1]
中选择。
什么是位置 ID?head_mask
(形状为(num_heads,)
或(num_layers, num_heads)
的Numpy 数组
或tf.Tensor
,可选)- 用于使自注意力模块的选定头部失效的掩码。掩码值选定在[0, 1]
之间:
- 1 表示头部未被“屏蔽”,
- 0 表示头部被“屏蔽”。
inputs_embeds
(形状为(batch_size, sequence_length, hidden_size)
的tf.Tensor
,可选)- 可选地,您可以选择直接传递嵌入表示,而不是传递input_ids
。如果您想要更多控制权来将input_ids
索引转换为相关向量,而不是使用模型的内部嵌入查找矩阵,这将非常有用。output_attentions
(bool
,可选)- 是否返回所有注意力层的注意力张量。有关更多详细信息,请参阅返回张量中的attentions
。此参数仅在急切模式下可用,在图模式下将使用配置中的值。output_hidden_states
(bool
, optional) — 是否返回所有层的隐藏状态。有关更多详细信息,请参阅返回张量下的hidden_states
。这个参数只能在急切模式下使用,在图模式下将使用配置中的值。return_dict
(bool
, optional) — 是否返回一个 ModelOutput 而不是一个普通的元组。这个参数可以在急切模式下使用,在图模式下该值将始终设置为 True。training
(bool
, optional, 默认为False
) — 是否在训练模式下使用模型(一些模块,如 dropout 模块,在训练和评估之间有不同的行为)。
返回
transformers.modeling_tf_outputs.TFBaseModelOutput 或tuple(tf.Tensor)
一个 transformers.modeling_tf_outputs.TFBaseModelOutput 或一个tf.Tensor
元组(如果传递了return_dict=False
或当config.return_dict=False
时)包含根据配置(ConvBertConfig)和输入的不同元素。
last_hidden_state
(形状为(batch_size, sequence_length, hidden_size)
的tf.Tensor
) — 模型最后一层的隐藏状态序列。hidden_states
(tuple(tf.FloatTensor)
, optional, 当传递output_hidden_states=True
或config.output_hidden_states=True
时返回) — 形状为(batch_size, sequence_length, hidden_size)
的tf.Tensor
元组(一个用于嵌入的输出 + 一个用于每个层的输出)。
每个层的模型输出的隐藏状态加上初始嵌入输出。attentions
(tuple(tf.Tensor)
, optional, 当传递output_attentions=True
或config.output_attentions=True
时返回) — 形状为(batch_size, num_heads, sequence_length, sequence_length)
的tf.Tensor
元组(每个层一个)。
注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。
TFConvBertModel 的前向方法,覆盖了__call__
特殊方法。
虽然前向传递的步骤需要在此函数内定义,但应该在此之后调用Module
实例而不是这个,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。
示例:
>>> from transformers import AutoTokenizer, TFConvBertModel >>> import tensorflow as tf >>> tokenizer = AutoTokenizer.from_pretrained("YituTech/conv-bert-base") >>> model = TFConvBertModel.from_pretrained("YituTech/conv-bert-base") >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="tf") >>> outputs = model(inputs) >>> last_hidden_states = outputs.last_hidden_state
TFConvBertForMaskedLM
class transformers.TFConvBertForMaskedLM
( config *inputs **kwargs )
参数
config
(ConvBertConfig) — 具有模型所有参数的模型配置类。使用配置文件初始化不会加载与模型关联的权重,只会加载配置。查看 from_pretrained()方法以加载模型权重。
ConvBERT 模型顶部带有一个语言建模
头。
这个模型继承自 TFPreTrainedModel。检查超类文档以获取库为所有模型实现的通用方法(如下载或保存、调整输入嵌入、修剪头等)。
这个模型也是一个tf.keras.Model子类。将其用作常规的 TF 2.0 Keras 模型,并参考 TF 2.0 文档以获取与一般用法和行为相关的所有内容。
transformers
中的 TensorFlow 模型和层接受两种格式的输入:
- 将所有输入作为关键字参数(类似于 PyTorch 模型),或者
- 将所有输入作为列表、元组或字典放在第一个位置参数中。
支持第二种格式的原因是,Keras 方法在将输入传递给模型和层时更喜欢这种格式。由于这种支持,当使用model.fit()
等方法时,应该“只需工作” - 只需以model.fit()
支持的任何格式传递输入和标签!但是,如果您想在 Keras 方法之外使用第二种格式,比如在使用 Keras Functional
API 创建自己的层或模型时,有三种可能性可以用来收集第一个位置参数中的所有输入张量:
- 一个只包含
input_ids
的单个张量:model(input_ids)
- 一个长度可变的列表,其中包含一个或多个输入张量,按照文档字符串中给定的顺序:
model([input_ids, attention_mask])
或model([input_ids, attention_mask, token_type_ids])
- 一个字典,其中包含一个或多个与文档字符串中给定的输入名称相关联的输入张量:
model({"input_ids": input_ids, "token_type_ids": token_type_ids})
请注意,当使用子类化创建模型和层时,您无需担心任何这些,因为您可以像对待其他 Python 函数一样传递输入!
call
( input_ids: TFModelInputType | None = None attention_mask: np.ndarray | tf.Tensor | None = None token_type_ids: np.ndarray | tf.Tensor | None = None position_ids: np.ndarray | tf.Tensor | None = None head_mask: np.ndarray | tf.Tensor | None = None inputs_embeds: tf.Tensor | None = None output_attentions: Optional[bool] = None output_hidden_states: Optional[bool] = None return_dict: Optional[bool] = None labels: tf.Tensor | None = None training: Optional[bool] = False ) → export const metadata = 'undefined';transformers.modeling_tf_outputs.TFMaskedLMOutput or tuple(tf.Tensor)
参数
input_ids
(形状为(batch_size, sequence_length)
的Numpy 数组
或tf.Tensor
)- 词汇表中输入序列标记的索引。
可以使用 AutoTokenizer 来获取索引。有关详细信息,请参阅 PreTrainedTokenizer.call
()和 PreTrainedTokenizer.encode()。
什么是输入 ID?attention_mask
(形状为(batch_size, sequence_length)
的Numpy 数组
或tf.Tensor
,可选)- 用于避免在填充标记索引上执行注意力的掩码。掩码值在[0, 1]
中选择:
- 1 表示未被“masked”的标记,
- 对于被
masked
的标记,使用 0。
- 什么是注意力掩码?
token_type_ids
(形状为(batch_size, sequence_length)
的Numpy 数组
或tf.Tensor
,可选)- 段标记索引,指示输入的第一部分和第二部分。索引在[0, 1]
中选择:
- 0 对应于句子 A标记,
- 1 对应于句子 B标记。
- 什么是标记类型 ID?
position_ids
(形状为(batch_size, sequence_length)
的Numpy 数组
或tf.Tensor
,可选)- 每个输入序列标记在位置嵌入中的位置的索引。在范围[0, config.max_position_embeddings - 1]
中选择。
什么是位置 ID?head_mask
(形状为(num_heads,)
或(num_layers, num_heads)
的Numpy 数组
或tf.Tensor
,可选)- 用于使自注意力模块的选定头部失效的掩码。掩码值在[0, 1]
中选择:
- 1 表示头部未被“masked”,
- 0 表示头部被
masked
。
inputs_embeds
(形状为(batch_size, sequence_length, hidden_size)
的tf.Tensor
,可选)- 可选地,您可以选择直接传递嵌入表示,而不是传递input_ids
。如果您想要更多控制权,以便将input_ids
索引转换为相关向量,而不是模型的内部嵌入查找矩阵,则这很有用。output_attentions
(bool
, optional) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参见返回张量下的attentions
。此参数仅在急切模式下使用,在图模式下将使用配置中的值。output_hidden_states
(bool
, optional) — 是否返回所有层的隐藏状态。有关更多详细信息,请参见返回张量下的hidden_states
。此参数仅在急切模式下使用,在图模式下将使用配置中的值。return_dict
(bool
, optional) — 是否返回 ModelOutput 而不是普通元组。此参数可在急切模式下使用,在图模式下该值将始终设置为 True。training
(bool
, optional, 默认为False
) — 是否在训练模式下使用模型(一些模块如 dropout 模块在训练和评估之间有不同的行为)。labels
(tf.Tensor
of shape(batch_size, sequence_length)
, optional) — 用于计算掩码语言建模损失的标签。索引应在[-100, 0, ..., config.vocab_size]
范围内(请参阅input_ids
文档字符串)。索引设置为-100
的标记将被忽略(掩码),损失仅计算具有标签在[0, ..., config.vocab_size]
范围内的标记
返回值
transformers.modeling_tf_outputs.TFMaskedLMOutput 或tuple(tf.Tensor)
transformers.modeling_tf_outputs.TFMaskedLMOutput 或一个tf.Tensor
元组(如果传递return_dict=False
或config.return_dict=False
)包含根据配置(ConvBertConfig)和输入的各种元素。
loss
(tf.Tensor
of shape(n,)
, optional, 其中 n 是非掩码标签的数量,在提供labels
时返回) — 掩码语言建模(MLM)损失。logits
(tf.Tensor
of shape(batch_size, sequence_length, config.vocab_size)
) — 语言建模头的预测分数(SoftMax 之前每个词汇标记的分数)。hidden_states
(tuple(tf.Tensor)
, optional, 当传递output_hidden_states=True
或config.output_hidden_states=True
时返回) — 形状为(batch_size, sequence_length, hidden_size)
的tf.Tensor
元组(一个用于嵌入的输出 + 一个用于每层的输出)。
每层模型的隐藏状态加上初始嵌入输出。attentions
(tuple(tf.Tensor)
, optional, 当传递output_attentions=True
或config.output_attentions=True
时返回) — 形状为(batch_size, num_heads, sequence_length, sequence_length)
的tf.Tensor
元组(每层一个)。
注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。
TFConvBertForMaskedLM 的前向方法,覆盖了__call__
特殊方法。
虽然前向传递的配方需要在此函数内定义,但应该在此之后调用Module
实例,而不是在此处调用,因为前者会负责运行预处理和后处理步骤,而后者会默默地忽略它们。
示例:
>>> from transformers import AutoTokenizer, TFConvBertForMaskedLM >>> import tensorflow as tf >>> tokenizer = AutoTokenizer.from_pretrained("YituTech/conv-bert-base") >>> model = TFConvBertForMaskedLM.from_pretrained("YituTech/conv-bert-base") >>> inputs = tokenizer("The capital of France is [MASK].", return_tensors="tf") >>> logits = model(**inputs).logits >>> # retrieve index of [MASK] >>> mask_token_index = tf.where((inputs.input_ids == tokenizer.mask_token_id)[0]) >>> selected_logits = tf.gather_nd(logits[0], indices=mask_token_index) >>> predicted_token_id = tf.math.argmax(selected_logits, axis=-1)
>>> labels = tokenizer("The capital of France is Paris.", return_tensors="tf")["input_ids"] >>> # mask labels of non-[MASK] tokens >>> labels = tf.where(inputs.input_ids == tokenizer.mask_token_id, labels, -100) >>> outputs = model(**inputs, labels=labels)
Transformers 4.37 中文文档(二十七)(5)https://developer.aliyun.com/article/1563750