ModelScope部署到trt-llm

简介: ModelScope部署到trt-llm

是的,ModelScope支持将模型部署到TRT-LLM (TensorRT Large Language Model) 上。TensorRT是一种高性能的深度学习推理优化器和运行时,它可以优化经过训练的神经网络模型以更快的速度运行在多种平台上,包括嵌入式设备和数据中心。
千问大模型是由阿里云开发的一种大规模预训练语言模型,其中包含了大量的训练数据和复杂的模型结构,因此它对于硬件要求较高。通过使用TensorRT等优化技术,可以让千问大模型在更少的硬件资源上获得更好的性能。
具体来说,您可以通过以下步骤将千问模型部署到TRT-LLM上:

  1. 下载和安装TensorRT。您可以在NVIDIA的官方网站上找到相关的文档和安装包。
  2. 将千问模型转换为TensorFlow格式。这是因为TensorRT只能处理TensorFlow格式的模型。
  3. 使用TensorRT的API和工具将TensorFlow模型转换为TensorRT模型。在这个过程中,TensorRT会自动优化模型的结构和权重,以提高推理速度和减少内存占用。
  4. 使用ModelScope将优化后的TensorRT模型部署到您的应用程序中。

在完成以上步骤之后,您就可以使用经过优化的千问模型在各种不同的硬件平台上实现高性能的推理操作了。

相关文章
|
8月前
|
缓存 Kubernetes 异构计算
使用TensorRT-LLM进行生产环境的部署指南
TensorRT-LLM是一个由Nvidia设计的开源框架,用于在生产环境中提高大型语言模型的性能。该框架是基于 TensorRT 深度学习编译框架来构建、编译并执行计算图,并借鉴了许多 FastTransformer 中高效的 Kernels 实现,并且可以利用 NCCL 完成设备之间的通讯。
402 12
|
2月前
|
自然语言处理 监控 API
"阿里云ModelScope深度测评:从预训练模型到一键部署,揭秘高效模型开发背后的秘密,开发者必备利器!"
【10月更文挑战第23天】阿里云ModelScope是一款便捷的模型开发、训练、部署和应用平台。它提供丰富的预训练模型,涵盖自然语言处理、计算机视觉等领域,支持一键式模型训练和部署,具备模型版本管理和监控功能,显著降低开发门槛,提高模型应用效率。
94 0
|
4月前
|
算法 测试技术 AI芯片
CPU反超NPU,llama.cpp生成速度翻5倍!LLM端侧部署新范式T-MAC开源
【9月更文挑战第7天】微软研究院提出了一种名为T-MAC的创新方法,旨在解决大型语言模型在资源受限的边缘设备上高效部署的问题。T-MAC通过查表法在CPU上实现低比特LLM的高效推理,支持混合精度矩阵乘法,无需解量化。其通过位级查表实现统一且可扩展的解决方案,优化数据布局和重用率,显著提升了单线程和多线程下的mpGEMV及mpGEMM性能,并在端到端推理吞吐量和能效方面表现出色。然而,表量化和快速聚合技术可能引入近似和数值误差,影响模型准确性。论文详见:[链接](https://www.arxiv.org/pdf/2407.00088)。
213 10
|
5月前
|
人工智能 PyTorch 算法框架/工具
Xinference实战指南:全面解析LLM大模型部署流程,携手Dify打造高效AI应用实践案例,加速AI项目落地进程
【8月更文挑战第6天】Xinference实战指南:全面解析LLM大模型部署流程,携手Dify打造高效AI应用实践案例,加速AI项目落地进程
Xinference实战指南:全面解析LLM大模型部署流程,携手Dify打造高效AI应用实践案例,加速AI项目落地进程
|
5月前
|
Linux API 开发工具
LLM大模型部署实战指南:Ollama简化流程,OpenLLM灵活部署,LocalAI本地优化,Dify赋能应用开发
【8月更文挑战第5天】LLM大模型部署实战指南:Ollama简化流程,OpenLLM灵活部署,LocalAI本地优化,Dify赋能应用开发
LLM大模型部署实战指南:Ollama简化流程,OpenLLM灵活部署,LocalAI本地优化,Dify赋能应用开发
|
7月前
|
弹性计算 人工智能 JSON
一键云部署:资源编排 ROS 轻松部署 LLM 流程编排服务 Flowise
Flowise 是一个开源低代码平台,用于构建定制化的 LLM 流程和 AI 代理。阿里云的 Resource Orchestration Service (ROS) 提供了一键部署 Flowise 到 ECS 实例的方案。用户只需在 ROS 控制台配置模板参数,如可用区和实例类型,即可完成部署。部署后,从资源栈输出获取 Flowise 服务地址以开始使用。ROS 模板定义了 VPC、ECS 实例等资源,并通过 ROS 自动化部署,简化了云上资源和应用的管理。
一键云部署:资源编排 ROS 轻松部署 LLM 流程编排服务 Flowise
|
8月前
|
人工智能 物联网 API
LLM 大模型学习必知必会系列(十三):基于SWIFT的VLLM推理加速与部署实战
LLM 大模型学习必知必会系列(十三):基于SWIFT的VLLM推理加速与部署实战
LLM 大模型学习必知必会系列(十三):基于SWIFT的VLLM推理加速与部署实战
|
8月前
|
机器学习/深度学习 缓存 算法
LLM 大模型学习必知必会系列(十二):VLLM性能飞跃部署实践:从推理加速到高效部署的全方位优化[更多内容:XInference/FastChat等框架]
LLM 大模型学习必知必会系列(十二):VLLM性能飞跃部署实践:从推理加速到高效部署的全方位优化[更多内容:XInference/FastChat等框架]
LLM 大模型学习必知必会系列(十二):VLLM性能飞跃部署实践:从推理加速到高效部署的全方位优化[更多内容:XInference/FastChat等框架]
|
8月前
|
弹性计算 人工智能 JSON
一键云部署:资源编排 ROS 轻松部署 LLM 应用开发平台 Dify
Dify是一款开源的LLM应用开发平台,融合BaaS和LLMOps理念,助力开发者快速构建生产级AI应用。阿里云的ROS提供IaC自动化部署服务,通过JSON/YAML/Terraform模板轻松部署Dify环境。以下是简化的部署步骤: 1. 登录ROS控制台的Dify部署页面。 2. 配置ECS实例参数。 3. 创建资源栈,完成部署后从输出获取Dify服务地址。 ROS模板定义了VPC、VSwitch、ECS实例等资源,通过ROS控制台创建资源栈实现自动化部署。这种方式高效、稳定,体现了IaC的最佳实践。
|
8月前
|
机器学习/深度学习 人工智能 分布式计算
【大模型】在实际应用中大规模部署 LLM 会带来哪些挑战?
【5月更文挑战第5天】【大模型】在实际应用中大规模部署 LLM 会带来哪些挑战?

热门文章

最新文章