【YOLOv10改进-卷积Conv】 SPD-Conv空间深度转换卷积,处理低分辨率图像和小对象问题

简介: YOLO目标检测专栏探讨了CNN在低分辨率和小目标检测中的局限性,提出SPD-Conv新架构,替代步长卷积和池化层,通过空间到深度层和非步长卷积保持细粒度信息。创新点包括消除信息损失、通用设计和性能提升。YOLOv5和ResNet应用SPD-Conv后,在困难任务上表现优越。详情见YOLO有效改进系列及项目实战目录。

YOLOv10目标检测创新改进与实战案例专栏

专栏链接: YOLOv10 创新改进有效涨点

摘要

卷积神经网络(CNNs)在许多计算机视觉任务中取得了巨大成功,例如图像分类和目标检测。然而,当面对图像分辨率低或对象较小的更加困难的任务时,它们的性能迅速下降。在本文中,我们指出这一问题根源于现有CNN架构中一个有缺陷但常见的设计,即使用了步长卷积和/或池化层,这导致了细粒度信息的丢失和较不有效的特征表示的学习。为此,我们提出了一种新的CNN构建块,名为SPD-Conv,用以替代每个步长卷积层和每个池化层(从而完全消除它们)。SPD-Conv由一个空间到深度(SPD)层和一个非步长卷积(Conv)层组成,并且可以应用于大多数(如果不是全部的话)CNN架构中。我们在两个最具代表性的计算机视觉任务下解释这一新设计:目标检测和图像分类。然后,我们通过将SPD-Conv应用于YOLOv5和ResNet来创建新的CNN架构,并通过实验证明我们的方法特别是在图像分辨率低和小对象的困难任务上显著优于最先进的深度学习模型。我们已经在开放源代码。

创新点

SPD-Conv的创新点在于其独特的设计理念和结构,它旨在解决当处理低分辨率图像或小物体时,传统卷积神经网络(CNN)性能下降的问题。以下是SPD-Conv的主要创新点:

  1. 完全消除卷积步长和池化层:传统CNN中,卷积步长和池化层被广泛用于减小特征图的空间尺寸,以减少计算量和增加感受野。然而,这种设计会导致细粒度信息的损失,特别是在处理低分辨率图像和小物体时。SPD-Conv通过完全摒弃这些操作,避免了信息损失,有助于保持更多的细节和特征信息。

  2. 空间到深度(SPD)层:SPD-Conv包含一个SPD层,该层通过重排特征图的元素,将空间信息转换到深度(通道)维度,从而实现下采样而不损失信息。这种方法保留了通道维度中的所有信息,避免了传统下采样方法中的信息丢失。

  3. 非步长卷积层:在SPD层之后,SPD-Conv使用非步长(即步长为1)的卷积层进一步处理特征图。这种设计允许网络在不丢失空间信息的前提下,通过可学习的参数精细调整特征表示,有助于提高模型对小物体和低分辨率图像的处理能力。

  4. 通用性和统一性:SPD-Conv不仅可以替代CNN中的卷积步长和池化层,还能广泛应用于各种CNN架构中,提供一种统一的改进策略。这增加了SPD-Conv的适用范围和灵活性,使其能够在不同的深度学习任务和模型中发挥作用。

  5. 性能提升:通过在目标检测和图像分类任务中的应用和验证,SPD-Conv展现了其在处理低分辨率图像和小物体时相比传统CNN模型的显著性能提升。这证明了其设计理念在实际应用中的有效性和优势。

yolov10 引入


class space_to_depth(nn.Module):
    """
    space_to_depth类继承自nn.Module,用于实现空间到深度的转换,这种转换通过重排输入张量的元素来降低其空间维度,
    同时增加深度维度,常用于深度学习中对图像进行下采样。

    参数:
    dimension: 用于指定转换的维度,默认为1。此参数设置转换操作的深度维度增加的倍数。
    """

    def __init__(self, dimension=1):
        """
        初始化space_to_depth模块。
        参数:
        dimension: 转换的维度,决定了深度增加的倍数,默认值为1。
        """
        super().__init__()  # 调用父类的构造函数来进行初始化
        self.d = dimension  # 保存维度参数

    def forward(self, x):
        """
        前向传播函数,实现输入x的空间到深度的转换。
        通过将输入张量x的空间维度重新排列到深度维度来实现转换,具体操作是将x的高和宽每隔一个像素取一个,形成四个部分,
        然后将这四个部分在深度(通道)维度上进行拼接。

        参数:
        x: 输入张量,需要进行空间到深度转换的数据。

        返回:
        转换后的张量,其空间维度减小,深度维度增加。
        """
        # 对输入x进行空间到深度的转换操作,并在指定维度上进行拼接
        return torch.cat([x[..., ::2, ::2], x[..., 1::2, ::2], x[..., ::2, 1::2], x[..., 1::2, 1::2]], 1)

task与yaml配置

详见:https://blog.csdn.net/shangyanaf/article/details/140060105

相关文章
|
机器学习/深度学习 编解码 IDE
用于低分辨率图像和小物体的新 CNN 模块SPD-Conv
用于低分辨率图像和小物体的新 CNN 模块SPD-Conv
用于低分辨率图像和小物体的新 CNN 模块SPD-Conv
|
3月前
|
机器学习/深度学习 编解码 边缘计算
YOLOv5改进 | 卷积模块 | 用ShuffleNetV2卷积替换Conv【轻量化网络】
本文介绍了如何在YOLOv5中用ShuffleNetV2替换卷积以减少计算量。ShuffleNetV2是一个轻量级网络,采用深度可分离卷积、通道重组和多尺度特征融合技术。文中提供了一个逐步教程,包括ShuffleNetV2模块的代码实现和在YOLOv5配置文件中的添加方法。此外,还分享了完整的代码链接和GFLOPs的比较,显示了GFLOPs的显著减少。该教程适合初学者实践,以提升深度学习目标检测技能。
YOLOv5改进 | 卷积模块 | 用ShuffleNetV2卷积替换Conv【轻量化网络】
|
1月前
|
机器学习/深度学习 计算机视觉
【YOLOv10改进-卷积Conv】SCConv :即插即用的空间和通道重建卷积
YOLOv10专栏介绍了将Swin Transformer应用于目标检测的创新。Swin Transformer采用分层窗口结构,解决了视觉任务中的尺度变化问题,提供线性复杂度的效率提升。在图像分类、目标检测和语义分割任务中表现出色,超越先前最佳模型。YOLOv10结合Swin Transformer,利用其局部注意力机制和层次化设计,提升了检测性能。提供的代码片段展示了Swin Transformer模块,包括窗口划分、注意力计算和相对位置偏置。更多信息可在相关博客文章中找到。
|
1月前
|
计算机视觉
【YOLOv10改进-卷积Conv】动态蛇形卷积(Dynamic Snake Convolution)用于管状结构分割任务
YOLOv10专栏介绍了一种用于精确分割管状结构的新方法DSCNet,它结合了动态蛇形卷积、多视角融合和拓扑连续性约束损失。DSConv创新地聚焦细长局部结构,增强管状特征感知,而多视角融合和TCLoss则改善了全局形态理解和分割连续性。在2D和3D数据集上的实验显示,DSCNet在血管和道路等分割任务上超越了传统方法。DySnakeConv模块整合到YOLOv10中,提升了目标检测的准确性。[链接指向详细文章](https://blog.csdn.net/shangyanaf/article/details/140007047)
|
1月前
|
机器学习/深度学习 算法 计算机视觉
【YOLOv10改进 -卷积Conv】 AKConv(可改变核卷积):任意数量的参数和任意采样形状的即插即用的卷积
AKConv是一种可改变核卷积,旨在解决传统卷积的局限,包括固定大小的卷积窗口和卷积核尺寸。AKConv提供灵活的卷积核参数和采样形状,适应不同尺度特征。其创新点包括:1)支持任意大小和形状的卷积核;2)使用新算法确定初始采样位置;3)应用动态偏移调整采样位置;4)优化模型参数和计算效率。AKConv已应用于YOLOv8,提高网络性能。相关代码可在<https://github.com/CV-ZhangXin/AKConv>找到。
|
2月前
|
机器学习/深度学习 计算机视觉
YOLOv8改进 | 卷积模块 | 用坐标卷积CoordConv替换Conv
💡💡💡本专栏所有程序均经过测试,可成功执行💡💡💡
|
2月前
|
计算机视觉
【YOLOv8改进】 SAConv(Switchable Atrous Convolution):可切换的空洞卷积
**DetectoRS是目标检测的先进网络,融合递归特征金字塔和可切换空洞卷积。递归金字塔在FPN基础上增加反馈,增强特征表示。SAC使用不同空洞率卷积并用开关函数融合,适应不同尺度目标。在COCO数据集上,DetectoRS达到55.7%的Box AP,48.5%的Mask AP和50.0%的
|
3月前
|
机器学习/深度学习 编解码 计算机视觉
【YOLOv8改进】 SPD-Conv空间深度转换卷积,处理低分辨率图像和小对象问题 (论文笔记+引入代码)
YOLO目标检测专栏探讨了CNN在低分辨率和小目标检测中的局限性,提出SPD-Conv新架构,替代步长卷积和池化层,通过空间到深度层和非步长卷积保持细粒度信息。创新点包括消除信息损失、通用设计和性能提升。YOLOv5和ResNet应用SPD-Conv后,在困难任务上表现优越。详情见YOLO有效改进系列及项目实战目录。
|
3月前
|
机器学习/深度学习 计算机视觉
YOLOv8改进 | 2023 | FocalModulation替换SPPF(精度更高的空间金字塔池化)
YOLOv8改进 | 2023 | FocalModulation替换SPPF(精度更高的空间金字塔池化)
253 2
|
3月前
|
机器学习/深度学习 编解码 监控
YOLOv5改进 | 卷积篇 | SPD-Conv空间深度转换卷积(高效空间编码技术)
YOLOv5改进 | 卷积篇 | SPD-Conv空间深度转换卷积(高效空间编码技术)
615 0