【YOLOv10改进-卷积Conv】SCConv :即插即用的空间和通道重建卷积

简介: YOLOv10专栏介绍了将Swin Transformer应用于目标检测的创新。Swin Transformer采用分层窗口结构,解决了视觉任务中的尺度变化问题,提供线性复杂度的效率提升。在图像分类、目标检测和语义分割任务中表现出色,超越先前最佳模型。YOLOv10结合Swin Transformer,利用其局部注意力机制和层次化设计,提升了检测性能。提供的代码片段展示了Swin Transformer模块,包括窗口划分、注意力计算和相对位置偏置。更多信息可在相关博客文章中找到。

YOLOv10目标检测创新改进与实战案例专栏

专栏链接: YOLOv10 创新改进有效涨点

摘要

本文提出了一种新型视觉Transformer,称为Swin Transformer,它能够作为计算机视觉的通用骨干网络。将Transformer从语言领域适应到视觉领域时面临的挑战源于两个领域之间的差异,例如视觉实体的尺度变化大以及图像中像素的高分辨率相比文本中的单词。为了解决这些差异,我们提出了一种分层Transformer,其表示是通过移位窗口计算得出的。移位窗口方案通过将自注意力计算限制在非重叠的局部窗口内,同时也允许跨窗口连接,从而带来更高的效率。这种分层架构具有在不同尺度上建模的灵活性,并且其计算复杂度与图像大小呈线性关系。Swin Transformer的这些特性使其与广泛的视觉任务兼容,包括图像分类(在ImageNet-1K上的top-1准确率为87.3)和密集预测任务,如目标检测(在COCO test-dev上的框准确率为58.7,掩码准确率为51.1)以及语义分割(在ADE20K val上的mIoU为53.5)。其性能大幅超越了之前的最佳水平,在COCO上框准确率提高了+2.7,在掩码准确率提高了+2.6,在ADE20KmIoU提高了+3.2,展示了基于Transformer模型作为视觉骨干网络的潜力。分层设计和移位窗口方法也证明对所有MLP架构都有益。

创新点

  1. 引入类似于CNN的层次化构建方式构建Transformer模型;

  2. 引入locality思想,对无重合的window区域进行单独的self-attention计算。

yoloV10 引入 SwinTransformer


# --------------------------------------------------------
# Swin Transformer
# Copyright (c) 2021 Microsoft
# Licensed under The MIT License [see LICENSE for details]
# Written by Ze Liu
# --------------------------------------------------------

import torch
import torch.nn as nn
import torch.utils.checkpoint as checkpoint
from timm.models.layers import DropPath, to_2tuple, trunc_normal_

try:
    import os, sys

    kernel_path = os.path.abspath(os.path.join('..'))
    sys.path.append(kernel_path)
    from kernels.window_process.window_process import WindowProcess, WindowProcessReverse

except:
    WindowProcess = None
    WindowProcessReverse = None
    print("[Warning] Fused window process have not been installed. Please refer to get_started.md for installation.")


class Mlp(nn.Module):
    def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
        super().__init__()
        out_features = out_features or in_features
        hidden_features = hidden_features or in_features
        self.fc1 = nn.Linear(in_features, hidden_features)
        self.act = act_layer()
        self.fc2 = nn.Linear(hidden_features, out_features)
        self.drop = nn.Dropout(drop)

    def forward(self, x):
        x = self.fc1(x)
        x = self.act(x)
        x = self.drop(x)
        x = self.fc2(x)
        x = self.drop(x)
        return x


def window_partition(x, window_size):
    """
    Args:
        x: (B, H, W, C)
        window_size (int): window size

    Returns:
        windows: (num_windows*B, window_size, window_size, C)
    """
    B, H, W, C = x.shape
    x = x.view(B, H // window_size, window_size, W // window_size, window_size, C)
    windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C)
    return windows


def window_reverse(windows, window_size, H, W):
    """
    Args:
        windows: (num_windows*B, window_size, window_size, C)
        window_size (int): Window size
        H (int): Height of image
        W (int): Width of image

    Returns:
        x: (B, H, W, C)
    """
    B = int(windows.shape[0] / (H * W / window_size / window_size))
    x = windows.view(B, H // window_size, W // window_size, window_size, window_size, -1)
    x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1)
    return x


class WindowAttention(nn.Module):
    r""" Window based multi-head self attention (W-MSA) module with relative position bias.
    It supports both of shifted and non-shifted window.

    Args:
        dim (int): Number of input channels.
        window_size (tuple[int]): The height and width of the window.
        num_heads (int): Number of attention heads.
        qkv_bias (bool, optional):  If True, add a learnable bias to query, key, value. Default: True
        qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set
        attn_drop (float, optional): Dropout ratio of attention weight. Default: 0.0
        proj_drop (float, optional): Dropout ratio of output. Default: 0.0
    """

    def __init__(self, dim, window_size, num_heads, qkv_bias=True, qk_scale=None, attn_drop=0., proj_drop=0.):

        super().__init__()
        self.dim = dim
        self.window_size = window_size  # Wh, Ww
        self.num_heads = num_heads
        head_dim = dim // num_heads
        self.scale = qk_scale or head_dim ** -0.5

        # define a parameter table of relative position bias
        self.relative_position_bias_table = nn.Parameter(
            torch.zeros((2 * window_size[0] - 1) * (2 * window_size[1] - 1), num_heads))  # 2*Wh-1 * 2*Ww-1, nH

        # get pair-wise relative position index for each token inside the window
        coords_h = torch.arange(self.window_size[0])
        coords_w = torch.arange(self.window_size[1])
        coords = torch.stack(torch.meshgrid([coords_h, coords_w]))  # 2, Wh, Ww
        coords_flatten = torch.flatten(coords, 1)  # 2, Wh*Ww
        relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :]  # 2, Wh*Ww, Wh*Ww
        relative_coords = relative_coords.permute(1, 2, 0).contiguous()  # Wh*Ww, Wh*Ww, 2
        relative_coords[:, :, 0] += self.window_size[0] - 1  # shift to start from 0
        relative_coords[:, :, 1] += self.window_size[1] - 1
        relative_coords[:, :, 0] *= 2 * self.window_size[1] - 1
        relative_position_index = relative_coords.sum(-1)  # Wh*Ww, Wh*Ww
        self.register_buffer("relative_position_index", relative_position_index)

        self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
        self.attn_drop = nn.Dropout(attn_drop)
        self.proj = nn.Linear(dim, dim)
        self.proj_drop = nn.Dropout(proj_drop)

        trunc_normal_(self.relative_position_bias_table, std=.02)
        self.softmax = nn.Softmax(dim=-1)

    def forward(self, x, mask=None):
        """
        Args:
            x: input features with shape of (num_windows*B, N, C)
            mask: (0/-inf) mask with shape of (num_windows, Wh*Ww, Wh*Ww) or None
        """
        B_, N, C = x.shape
        qkv = self.qkv(x).reshape(B_, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
        q, k, v = qkv[0], qkv[1], qkv[2]  # make torchscript happy (cannot use tensor as tuple)

        q = q * self.scale
        attn = (q @ k.transpose(-2, -1))

        relative_position_bias = self.relative_position_bias_table[self.relative_position_index.view(-1)].view(
            self.window_size[0] * self.window_size[1], self.window_size[0] * self.window_size[1], -1)  # Wh*Ww,Wh*Ww,nH
        relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous()  # nH, Wh*Ww, Wh*Ww
        attn = attn + relative_position_bias.unsqueeze(0)

        if mask is not None:
            nW = mask.shape[0]
            attn = attn.view(B_ // nW, nW, self.num_heads, N, N) + mask.unsqueeze(1).unsqueeze(0)
            attn = attn.view(-1, self.num_heads, N, N)
            attn = self.softmax(attn)
        else:
            attn = self.softmax(attn)

        attn = self.attn_drop(attn)

        x = (attn @ v).transpose(1, 2).reshape(B_, N, C)
        x = self.proj(x)
        x = self.proj_drop(x)
        return x

    def extra_repr(self) -> str:
        return f'dim={self.dim}, window_size={self.window_size}, num_heads={self.num_heads}'

    def flops(self, N):
        # calculate flops for 1 window with token length of N
        flops = 0
        # qkv = self.qkv(x)
        flops += N * self.dim * 3 * self.dim
        # attn = (q @ k.transpose(-2, -1))
        flops += self.num_heads * N * (self.dim // self.num_heads) * N
        #  x = (attn @ v)
        flops += self.num_heads * N * N * (self.dim // self.num_heads)
        # x = self.proj(x)
        flops += N * self.dim * self.dim
        return flops

task.py使用与yaml配置

详见: https://blog.csdn.net/shangyanaf/article/details/140012110

相关文章
|
5月前
|
机器学习/深度学习 算法 计算机视觉
YOLOv10改进目录一览 | 涉及卷积层、轻量化、注意力、损失函数、Backbone、SPPF、Neck、检测头等全方位改进
YOLOv10改进目录一览 | 涉及卷积层、轻量化、注意力、损失函数、Backbone、SPPF、Neck、检测头等全方位改进
346 6
YOLOv10改进目录一览 | 涉及卷积层、轻量化、注意力、损失函数、Backbone、SPPF、Neck、检测头等全方位改进
|
机器学习/深度学习 编解码 计算机视觉
YOLOv8改进 | 主干篇 | SwinTransformer替换Backbone(附代码 + 详细修改步骤 +原理介绍)
YOLOv8改进 | 主干篇 | SwinTransformer替换Backbone(附代码 + 详细修改步骤 +原理介绍)
1259 0
|
机器学习/深度学习 编解码 计算机视觉
【YOLOv10改进-卷积Conv】 SPD-Conv空间深度转换卷积,处理低分辨率图像和小对象问题
YOLO目标检测专栏探讨了CNN在低分辨率和小目标检测中的局限性,提出SPD-Conv新架构,替代步长卷积和池化层,通过空间到深度层和非步长卷积保持细粒度信息。创新点包括消除信息损失、通用设计和性能提升。YOLOv5和ResNet应用SPD-Conv后,在困难任务上表现优越。详情见YOLO有效改进系列及项目实战目录。
|
机器学习/深度学习 存储 测试技术
【YOLOv10改进-注意力机制】iRMB: 倒置残差移动块 (论文笔记+引入代码)
YOLOv10专栏介绍了融合CNN与Transformer的iRMB模块,用于轻量级模型设计。iRMB在保持高效的同时结合了局部和全局信息处理,减少了资源消耗,提升了移动端性能。在ImageNet等基准上超越SOTA,且在目标检测等任务中表现优秀。代码示例展示了iRMB的实现细节,包括自注意力机制和卷积操作的整合。更多配置信息见相关链接。
|
9月前
|
机器学习/深度学习 数据可视化 测试技术
YOLO11实战:新颖的多尺度卷积注意力(MSCA)加在网络不同位置的涨点情况 | 创新点如何在自己数据集上高效涨点,解决不涨点掉点等问题
本文探讨了创新点在自定义数据集上表现不稳定的问题,分析了不同数据集和网络位置对创新效果的影响。通过在YOLO11的不同位置引入MSCAAttention模块,展示了三种不同的改进方案及其效果。实验结果显示,改进方案在mAP50指标上分别提升了至0.788、0.792和0.775。建议多尝试不同配置,找到最适合特定数据集的解决方案。
2233 0
|
机器学习/深度学习 编解码 计算机视觉
【YOLOv10改进-注意力机制】HAT(Hybrid Attention Transformer,)混合注意力机制
YOLOv10专栏介绍了一种名为HAT的新方法,旨在改善Transformer在图像超分辨率中的表现。HAT结合通道和窗口注意力,激活更多像素并增强跨窗口信息交互。亮点包括:1) 更多像素激活,2) 有效跨窗口信息聚合,3) 任务特定的预训练策略。HAT模型包含浅层特征提取、深层特征提取和图像重建阶段。提供的代码片段展示了HAT类的定义,参数包括不同层的深度、注意力头数量、窗口大小等。欲了解更多详情和配置,请参考给定链接。
|
机器学习/深度学习 编解码 算法
YOLOv5改进 | 主干网络 | 用EfficientNet卷积替换backbone【教程+代码 】
在YOLOv5的GFLOPs计算量中,卷积占了其中大多数的比列,为了减少计算量,研究人员提出了用EfficientNet代替backbone。本文给大家带来的教程是**将原来的主干网络替换为EfficientNet。文章在介绍主要的原理后,将手把手教学如何进行模块的代码添加和修改,并将修改后的完整代码放在文章的最后,方便大家一键运行,小白也可轻松上手实践。以帮助您更好地学习深度学习目标检测YOLO系列的挑战。
|
计算机视觉 网络架构
【YOLOv10改进-特征融合】YOLO-MS MSBlock : 分层特征融合策略
YOLOv10专栏介绍了YOLO-MS,一个优化多尺度目标检测的高效框架。YOLO-MS通过MS-Block和异构Kernel选择提升性能,平衡了计算复杂度与准确性。它在不依赖预训练的情况下,在COCO上超越同类模型,如YOLO-v7和RTMDet。MS-Block包含不同大小卷积的分支,用于增强特征表示。代码示例展示了MSBlock类的定义,用于处理不同尺度特征。该模块可应用于其他YOLO模型以提升性能。更多详情和配置参见相关链接。
|
机器学习/深度学习 计算机视觉
【YOLOv8改进】骨干网络: SwinTransformer (基于位移窗口的层次化视觉变换器)
YOLO目标检测创新改进与实战案例专栏介绍了YOLO的有效改进,包括使用新型视觉Transformer——Swin Transformer。Swin Transformer解决了Transformer在视觉领域的尺度变化和高分辨率问题,采用分层结构和移位窗口自注意力计算,适用于多种视觉任务,如图像分类、目标检测和语义分割,性能超越先前最佳模型。此外,文章还展示了如何在YOLOv8中引入Swin Transformer,并提供了相关代码实现。
|
机器学习/深度学习 算法 计算机视觉
【YOLOv10改进 -卷积Conv】 AKConv(可改变核卷积):任意数量的参数和任意采样形状的即插即用的卷积
AKConv是一种可改变核卷积,旨在解决传统卷积的局限,包括固定大小的卷积窗口和卷积核尺寸。AKConv提供灵活的卷积核参数和采样形状,适应不同尺度特征。其创新点包括:1)支持任意大小和形状的卷积核;2)使用新算法确定初始采样位置;3)应用动态偏移调整采样位置;4)优化模型参数和计算效率。AKConv已应用于YOLOv8,提高网络性能。相关代码可在<https://github.com/CV-ZhangXin/AKConv>找到。