Java 实现 Elasticsearch 查询全部数据

本文涉及的产品
检索分析服务 Elasticsearch 版,2核4GB开发者规格 1个月
简介: 【7月更文挑战第7天】Java 实现 Elasticsearch 查询全部数据

背景信息

es查询,在不指定 size 大小的情况下,默认查询 10条数据,比如执行如下查询命令

GET crm_meiqia_conversation/_search

image.png

如果你需要查询更多数据的话,你就可以通过指定 size 大小来查询更多数据,比如执行如下命令

GET crm_meiqia_conversation/_search
{
  "size":20
}

image.png

这个时候就有个疑问,如果有一些特殊的场景,想要一次性查询指定条件下的所有数据改如何操作呢,下面就来基于 Java 实现查询指定条件下的所有数据操作。

Java 实现查询 Elasticsearch 全部数据

实现后效果

首先来看一下基于 Java 实现查询指定条件下的 es 所有数据的展示效果

image.png

实现前效果

而默认情况下不设置 size 大小的 es 查询,默认查询 10条数据,就像这样的效果

image.png

Java 代码实现

下面开始讲如何通过 Java 实现查询 es 全部数据,首先来看一下默认查询 es 10条数据的代码

public AjaxResult getMeiqiaUidList(MeiqiaConversation meiqiaConversation) {
        BoolQueryBuilder query = QueryBuilders.boolQuery();
        BoolQueryBuilder boolQuery = QueryBuilders.boolQuery();
        //会话id
        Long convId = meiqiaConversation.getConvId();
        if (convId != null) {
            boolQuery.filter(QueryBuilders.termQuery("convId",convId));
        }
        //会话日期
        String convStartDate = (String) meiqiaConversation.getParams().get("convStartDate");
        String convEndDate = (String) meiqiaConversation.getParams().get("convEndDate");
        if (StringUtils.isNotEmpty(convStartDate)) {
            Date date = DateUtils.stringToDate(convStartDate, DateUtils.SDF_YMDHMS);
            boolQuery.filter(QueryBuilders.rangeQuery("convStartDate").gte(date.getTime()));
        }
        if (StringUtil.isNotEmptyString(convEndDate)) {
            Date date = DateUtils.stringToDate(convEndDate, DateUtils.SDF_YMDHMS);
            boolQuery.filter(QueryBuilders.rangeQuery("convEndDate").lte(date.getTime()));
        }
        //会话日期
        Date convStartDate2 = meiqiaConversation.getConvStartDate();
        Date convEndDate2 = meiqiaConversation.getConvEndDate();
        if (Objects.nonNull(convStartDate2)) {
            boolQuery.filter(QueryBuilders.rangeQuery("convStartDate").gte(convStartDate2.getTime()));
        }
        if (Objects.nonNull(convEndDate2)) {
            boolQuery.filter(QueryBuilders.rangeQuery("convEndDate").lte(convEndDate2.getTime()));
        }
        //学号
        String uid = (String) meiqiaConversation.getParams().get("uid");
        if (StringUtils.isNotEmpty(uid)) {
            if (uid.contains("#")) {
                String replace = uid.replace("#", "");
                boolQuery.filter(QueryBuilders.termQuery("clientInfo.name",replace));
            }else {
                boolQuery.filter(QueryBuilders.termQuery("clientInfo.uid",uid));
            }
        }
        //客服工号
        String agentId = (String) meiqiaConversation.getParams().get("agentId");
        if (StringUtils.isNotEmpty(agentId)) {
            boolQuery.filter(QueryBuilders.termQuery("agentId",agentId));
        }
        // 会话内容
        String content = (String) meiqiaConversation.getParams().get("content");
        if (StringUtils.isNotEmpty(content)) {
            boolQuery.filter(QueryBuilders.matchPhrasePrefixQuery("convContent.content",content));
        }

        query.must(boolQuery);

        // 初始化搜索请求构建器,用于构造搜索请求
        SearchRequestBuilder searchRequest = client.prepareSearch(indexProperties.getMeiqiaConversationIndex())
                // 设置搜索的类型
                .setTypes(indexProperties.getMeiqiaConversationType())
                // 设置查询条件
                .setQuery(query);


        // 使用SearchRequest获取搜索响应
        SearchResponse searchResponse = searchRequest.get();
        // 初始化存储所有搜索结果的列表
        List<EsMeiqiaConversation> rows = new ArrayList<>();
        // 格式化搜索响应中的数据,并添加到rows列表中
        List<EsMeiqiaConversation> list1 = formatMeiqiaDto(searchResponse);
        rows.addAll(list1);


        //记录返回的uid name
        List<MeiqiaConversation> list = new ArrayList<>();
        if (CollectionUtils.isNotEmpty(rows)) {
            //获取 uid name
            Map<String, List<EsMeiqiaConversation>> collect = rows.stream().collect(Collectors.groupingBy(EsMeiqiaConversation::getClientUid, Collectors.toList()));
            Set<String> uids = collect.keySet();
            for (String u : uids) {
                MeiqiaConversation conv = new MeiqiaConversation();
                conv.setUid(u);
                //同一个uid 对应同一个 name
                List<EsMeiqiaConversation> esconv = collect.get(u);
                String name = esconv.get(0).getClientName();
                conv.setName(name);
                list.add(conv);
            }
        }
        return AjaxResult.success(list);
    }

那么如何实现 一次查询满足条件的全部 es 数据呢,可以通过 scroll 实现,改造后的代码如下

    public AjaxResult getMeiqiaUidList(MeiqiaConversation meiqiaConversation) {
        BoolQueryBuilder query = QueryBuilders.boolQuery();
        BoolQueryBuilder boolQuery = QueryBuilders.boolQuery();
        //会话id
        Long convId = meiqiaConversation.getConvId();
        if (convId != null) {
            boolQuery.filter(QueryBuilders.termQuery("convId",convId));
        }
        //会话日期
        String convStartDate = (String) meiqiaConversation.getParams().get("convStartDate");
        String convEndDate = (String) meiqiaConversation.getParams().get("convEndDate");
        if (StringUtils.isNotEmpty(convStartDate)) {
            Date date = DateUtils.stringToDate(convStartDate, DateUtils.SDF_YMDHMS);
            boolQuery.filter(QueryBuilders.rangeQuery("convStartDate").gte(date.getTime()));
        }
        if (StringUtil.isNotEmptyString(convEndDate)) {
            Date date = DateUtils.stringToDate(convEndDate, DateUtils.SDF_YMDHMS);
            boolQuery.filter(QueryBuilders.rangeQuery("convEndDate").lte(date.getTime()));
        }
        //会话日期
        Date convStartDate2 = meiqiaConversation.getConvStartDate();
        Date convEndDate2 = meiqiaConversation.getConvEndDate();
        if (Objects.nonNull(convStartDate2)) {
            boolQuery.filter(QueryBuilders.rangeQuery("convStartDate").gte(convStartDate2.getTime()));
        }
        if (Objects.nonNull(convEndDate2)) {
            boolQuery.filter(QueryBuilders.rangeQuery("convEndDate").lte(convEndDate2.getTime()));
        }
        //学号
        String uid = (String) meiqiaConversation.getParams().get("uid");
        if (StringUtils.isNotEmpty(uid)) {
            if (uid.contains("#")) {
                String replace = uid.replace("#", "");
                boolQuery.filter(QueryBuilders.termQuery("clientInfo.name",replace));
            }else {
                boolQuery.filter(QueryBuilders.termQuery("clientInfo.uid",uid));
            }
        }
        //客服工号
        String agentId = (String) meiqiaConversation.getParams().get("agentId");
        if (StringUtils.isNotEmpty(agentId)) {
            boolQuery.filter(QueryBuilders.termQuery("agentId",agentId));
        }
        // 会话内容
        String content = (String) meiqiaConversation.getParams().get("content");
        if (StringUtils.isNotEmpty(content)) {
            boolQuery.filter(QueryBuilders.matchPhrasePrefixQuery("convContent.content",content));
        }

        query.must(boolQuery);

        // 初始化搜索请求构建器,用于构造搜索请求
        SearchRequestBuilder searchRequest = client.prepareSearch(indexProperties.getMeiqiaConversationIndex())
                // 设置搜索的类型
                .setTypes(indexProperties.getMeiqiaConversationType())
                // 设置查询条件
                .setQuery(query)
                // 设置返回结果的数量为100
                .setSize(100)
                // 设置滚动查询的时间间隔为1分钟
                .setScroll(TimeValue.timeValueMinutes(1));

        // 使用SearchRequest获取搜索响应
        SearchResponse searchResponse = searchRequest.get();
        // 初始化存储所有搜索结果的列表
        List<EsMeiqiaConversation> rows = new ArrayList<>();
        // 格式化搜索响应中的数据,并添加到rows列表中
        List<EsMeiqiaConversation> list1 = formatMeiqiaDto(searchResponse);
        rows.addAll(list1);
        // 使用Scroll方式遍历所有搜索结果
        do {
            // 准备下一次Scroll搜索,设置滚动时间为1分钟
            // 将scorllId循环传递 获取全部数据
            searchResponse = client.prepareSearchScroll(searchResponse.getScrollId()).setScroll(TimeValue.timeValueMinutes(1)).execute().actionGet();
            // 格式化新一批搜索结果,并添加到rows列表中
            List<EsMeiqiaConversation> list = formatMeiqiaDto(searchResponse);
            if (CollectionUtils.isNotEmpty(list)) {
                rows.addAll(list);
            }
            // 当搜索结果为空时,结束循环
            // 当searchHits的数组为空的时候结束循环,至此数据全部读取完毕
        } while (searchResponse.getHits().getHits().length != 0);

        // 创建一个ClearScrollRequest实例,用于清除滚动查询的会话。
        ClearScrollRequest clearScrollRequest = new ClearScrollRequest();

        // 将上一次查询返回的滚动ID添加到请求中,以便清除这个特定的会话。
        // 这是必要的,因为ClearScrollRequest需要至少一个滚动ID才能执行清除操作。
        clearScrollRequest.addScrollId(searchResponse.getScrollId());

        // 发送ClearScroll请求并获取操作的结果。
        // 这一步是必需的,因为它实际执行了清除滚动会话的操作,并允许我们处理结果或任何异常。
        client.clearScroll(clearScrollRequest).actionGet();

        //记录返回的uid name
        List<MeiqiaConversation> list = new ArrayList<>();
        if (CollectionUtils.isNotEmpty(rows)) {
            //获取 uid name
            Map<String, List<EsMeiqiaConversation>> collect = rows.stream().collect(Collectors.groupingBy(EsMeiqiaConversation::getClientUid, Collectors.toList()));
            Set<String> uids = collect.keySet();
            for (String u : uids) {
                MeiqiaConversation conv = new MeiqiaConversation();
                conv.setUid(u);
                //同一个uid 对应同一个 name
                List<EsMeiqiaConversation> esconv = collect.get(u);
                String name = esconv.get(0).getClientName();
                conv.setName(name);
                list.add(conv);
            }
        }
        return AjaxResult.success(list);
    }

核心代码是增加了滚动查询数据的操作

image.png

image.png

最后是清除滚动会话的操作

image.png

到这里关于 Java 实现 es 查询指定条件下的全部数据操作就结束了,整个操作过程比较容易理解,增加了 es 滚动查询 scroll 操作来实现查询 es 全部数据。

写在最后

以上是实现 es 查询指定条件下的全部数据的代码方法,大家需要借鉴的话,只需要补充 滚动查询部分即可,希望对大家有帮助。

相关实践学习
使用阿里云Elasticsearch体验信息检索加速
通过创建登录阿里云Elasticsearch集群,使用DataWorks将MySQL数据同步至Elasticsearch,体验多条件检索效果,简单展示数据同步和信息检索加速的过程和操作。
ElasticSearch 入门精讲
ElasticSearch是一个开源的、基于Lucene的、分布式、高扩展、高实时的搜索与数据分析引擎。根据DB-Engines的排名显示,Elasticsearch是最受欢迎的企业搜索引擎,其次是Apache Solr(也是基于Lucene)。 ElasticSearch的实现原理主要分为以下几个步骤: 用户将数据提交到Elastic Search 数据库中 通过分词控制器去将对应的语句分词,将其权重和分词结果一并存入数据 当用户搜索数据时候,再根据权重将结果排名、打分 将返回结果呈现给用户 Elasticsearch可以用于搜索各种文档。它提供可扩展的搜索,具有接近实时的搜索,并支持多租户。
目录
打赏
0
0
0
0
1627
分享
相关文章
java常用数据判空、比较和类型转换
本文介绍了Java开发中常见的数据处理技巧,包括数据判空、数据比较和类型转换。详细讲解了字符串、Integer、对象、List、Map、Set及数组的判空方法,推荐使用工具类如StringUtils、Objects等。同时,讨论了基本数据类型与引用数据类型的比较方法,以及自动类型转换和强制类型转换的规则。最后,提供了数值类型与字符串互相转换的具体示例。
125 3
Java爬虫获取微店快递费用item_fee API接口数据实现
本文介绍如何使用Java开发爬虫程序,通过微店API接口获取商品快递费用(item_fee)数据。主要内容包括:微店API接口的使用方法、Java爬虫技术背景、需求分析和技术选型。具体实现步骤为:发送HTTP请求获取数据、解析JSON格式的响应并提取快递费用信息,最后将结果存储到本地文件中。文中还提供了完整的代码示例,并提醒开发者注意授权令牌、接口频率限制及数据合法性等问题。
|
19天前
|
使用Java和Spring Data构建数据访问层
本文介绍了如何使用 Java 和 Spring Data 构建数据访问层的完整过程。通过创建实体类、存储库接口、服务类和控制器类,实现了对数据库的基本操作。这种方法不仅简化了数据访问层的开发,还提高了代码的可维护性和可读性。通过合理使用 Spring Data 提供的功能,可以大幅提升开发效率。
62 21
|
29天前
|
Java使用sql查询mongodb
通过MongoDB Atlas Data Lake或Apache Drill,可以在Java中使用SQL语法查询MongoDB数据。这两种方法都需要适当的配置和依赖库的支持。希望本文提供的示例和说明能够帮助开发者实现这一目标。
46 17
【潜意识Java】MyBatis中的动态SQL灵活、高效的数据库查询以及深度总结
本文详细介绍了MyBatis中的动态SQL功能,涵盖其背景、应用场景及实现方式。
103 6
基于Java的Hadoop文件处理系统:高效分布式数据解析与存储
本文介绍了如何借鉴Hadoop的设计思想,使用Java实现其核心功能MapReduce,解决海量数据处理问题。通过类比图书馆管理系统,详细解释了Hadoop的两大组件:HDFS(分布式文件系统)和MapReduce(分布式计算模型)。具体实现了单词统计任务,并扩展支持CSV和JSON格式的数据解析。为了提升性能,引入了Combiner减少中间数据传输,以及自定义Partitioner解决数据倾斜问题。最后总结了Hadoop在大数据处理中的重要性,鼓励Java开发者学习Hadoop以拓展技术边界。
50 7
【潜意识Java】深入理解MyBatis的Mapper层,以及让数据访问更高效的详细分析
深入理解MyBatis的Mapper层,以及让数据访问更高效的详细分析
65 1
|
1月前
|
java怎么统计每个项目下的每个类别的数据
通过本文,我们详细介绍了如何在Java中统计每个项目下的每个类别的数据,包括数据模型设计、数据存储和统计方法。通过定义 `Category`和 `Project`类,并使用 `ProjectManager`类进行管理,可以轻松实现项目和类别的数据统计。希望本文能够帮助您理解和实现类似的统计需求。
106 17
|
2月前
|
Java使用sql查询mongodb
通过使用 MongoDB Connector for BI 和 JDBC,开发者可以在 Java 中使用 SQL 语法查询 MongoDB 数据库。这种方法对于熟悉 SQL 的团队非常有帮助,能够快速实现对 MongoDB 数据的操作。同时,也需要注意到这种方法的性能和功能限制,根据具体应用场景进行选择和优化。
115 9
|
3月前
|
Java|如何用一个统一结构接收成员名称不固定的数据
本文介绍了一种 Java 中如何用一个统一结构接收成员名称不固定的数据的方法。
52 3

热门文章

最新文章

AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等