史上最简单给大模型注入新知识的方法(一)

简介: 史上最简单给大模型注入新知识的方法(一)

先执行 pip install --upgrade openai 。

from openai import OpenAI
# 加载.env 文件到环境变量
from dotenv import load_dotenv, find_dotenv
_ = load_dotenv(find_dotenv())
# 初始化 OpenAI 服务。会自动从环境变量加载 OPENAI_API_KEY 和 OPENAI_BASE_URL
client = OpenAI()
# 消息来啦
messages = [
    {
        "role": "system",
        "content": "你可是 AIGC 助手小瓜皮哦,同时也是 AGI 课堂的助教呢。记住啦,这门课是每周二、周四上课哟。"  # 新知识注入咯
    },
    {
        "role": "user",
        "content": "会在凌晨上课吗?"  # 来问个问题吧,也可以自己改改试试看哦
    },
]
# 调用 GPT-3.5 啦
chat_completion = client.chat.completions.create(
    model="gpt-3.5-turbo",
    messages=messages
)
# 输出回复啦
print(chat_completion.choices[0].message.content)

回复如下

课程不是在凌晨上。咱们的课程安排是在每周二和周四进行。
目录
相关文章
|
8月前
|
人工智能 自然语言处理 算法
思维链不存在了?纽约大学最新研究:推理步骤可省略
【5月更文挑战第26天】纽约大学研究发现,Transformer模型在处理复杂任务时可能不依赖思维链,而是通过填充符号实现计算。实验显示,填充符号能提升模型在特定任务中的准确率,扩展其表达能力,尤其是在处理嵌套量词问题时。然而,模型有效利用填充符号的学习是个挑战,因填充符号的隐藏层表示不易判断。研究提示,Transformer模型可能通过填充符号并行化解决TC0类问题,但可能使决策过程变得不透明,影响可解释性。该研究为优化语言模型提供了新思路,但也提出了可解释性与计算效率之间平衡的议题。[链接](https://arxiv.org/pdf/2404.15758)
73 1
|
机器学习/深度学习 人工智能 达摩院
将人类知识注入预训练模型,让AI“更聪明”
达摩院首次利用半监督学习将标注的人类知识注入预训练对话模型,在MultiWOZ2.1等三个国际主流对话数据集中均实现了最佳效果,提升幅度明显,为知识和数据融合探索出新路径。目前达摩院这一创新工作的相关论文已被AAAI2022接收。
1033 0
将人类知识注入预训练模型,让AI“更聪明”
|
机器学习/深度学习 人工智能 算法
【AI幽灵】超90%论文算法不可复现,你为何不愿公开代码?
过去几年发表的AI顶会论文提出的400种算法中,公开算法代码的只占6%,只有三分之一分享了测试数据,只有一半分享“伪代码”。这是今年AAAI会议上一个严峻的报告。科学家们正在通过“可复现性挑战”鼓励复现新算法,或研究依据论文自动生成代码的工具。
4018 0
|
机器学习/深度学习 人工智能