揭开大模型幻觉之谜:深入剖析数据偏差与模型局限性如何联手制造假象,并提供代码实例助你洞悉真相

简介: 【10月更文挑战第2天】近年来,大规模预训练模型(大模型)在自然语言处理和计算机视觉等领域取得卓越成绩,但也存在“大模型幻觉”现象,即高准确率并不反映真实理解能力。这主要由数据偏差和模型局限性导致。通过平衡数据集和引入正则化技术可部分缓解该问题,但仍需学界和业界共同努力。

大模型幻觉底层逻辑分析
image.png

近年来,随着计算资源的飞速发展和机器学习理论的进步,深度学习领域的大规模预训练模型(简称大模型)逐渐成为研究热点。这些模型拥有庞大的参数量,能够处理复杂的任务,并在多项自然语言处理(NLP)、计算机视觉(CV)等任务上取得了卓越的成绩。然而,在一片繁荣景象的背后,也存在着所谓的“大模型幻觉”现象,即模型在某些情况下表现出的性能并没有真正反映出其理解能力或泛化能力。本文旨在探讨这一现象背后的逻辑,并通过具体的例子来说明其成因及解决方案。

所谓“大模型幻觉”,主要是指虽然模型在特定任务上达到了很高的准确率,但这并不意味着模型具备了真正的“理解”。这种现象的出现,一方面是因为数据偏差导致模型学习到了错误的关联关系;另一方面,则是因为模型本身的局限性,比如过度拟合、泛化能力不足等问题。

要理解“大模型幻觉”的根源,我们首先需要认识到数据在训练过程中的重要性。假设有一个文本分类任务,如果训练数据集中某一类别的样本总是出现在特定的上下文中,那么模型就有可能仅仅依靠这些上下文线索来进行分类,而不是真正理解文本的内容。下面是一个简单的代码示例,展示如何通过数据预处理来降低这种偏差的影响:

import pandas as pd

# 假设df是我们使用的数据集DataFrame
def balance_dataset(df):
    # 计算各类别样本数量
    class_counts = df['label'].value_counts()

    # 获取最少类别样本数
    min_count = class_counts.min()

    # 对每个类别进行下采样,使各类别样本数相同
    balanced_df = pd.concat([df[df['label'] == c].sample(min_count) for c in class_counts.index])

    return balanced_df

balanced_data = balance_dataset(df)

此外,模型的设计也是一个关键因素。尽管深度学习模型具有强大的表征学习能力,但它们也可能陷入过拟合陷阱,即模型在训练集上表现很好,但在未见过的数据上表现不佳。为了避免这种情况,可以通过引入正则化技术来约束模型的学习过程,例如L1或L2正则化:

import torch.nn as nn

class RegularizedModel(nn.Module):
    def __init__(self):
        super(RegularizedModel, self).__init__()
        self.fc = nn.Linear(in_features, out_features)
        self.dropout = nn.Dropout(p=0.5)

    def forward(self, x):
        x = self.fc(x)
        x = self.dropout(x)
        return x

# 在训练过程中,可以设置适当的权重衰减参数(weight_decay)来实现L2正则化
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate, weight_decay=1e-5)

总之,“大模型幻觉”是一个值得深入探讨的话题。通过对数据处理和模型结构的精心设计,可以在一定程度上缓解这一现象,使模型更加鲁棒可靠。当然,要完全解决这个问题,还需要学术界和工业界的共同努力,不断推进人工智能理论和技术的发展。

相关文章
|
1月前
|
人工智能 自然语言处理 BI
从数据积累到大模型的智能飞跃,你准备好了吗?
在数据驱动的时代,人工智能(AI)正重塑世界。蚂蚁集团的师文汇在「DATA+AI」论坛上发表演讲,阐述了《数据驱动的AI原生应用与开放框架》。他指出,AI应用经历了从数据积累到大模型的智能飞跃,数据已成为智能应用成功的关键。师文汇强调,构建智能应用需结合优质大模型与行业数据。演讲还介绍了AI原生应用的研发变革与挑战,包括编程模型转变、研发范式的不确定性及与现有系统的交互等问题。此外,他还分享了AI原生应用框架的思考与探索,提出了泛ETL、实验反馈机制及应对不确定性等解决方案,并展示了DB-GPT在政企、金融等多个领域的应用案例。
|
3月前
|
机器学习/深度学习 数据采集 人工智能
揭秘大型机器学习模型背后的秘密:如何在技术深度与广度之间找到完美平衡点,探索那些鲜为人知的设计、训练与部署技巧,让你的作品脱颖而出!
【8月更文挑战第21天】大型机器学习模型是人工智能的关键方向,借助不断增强的计算力和海量数据,已实现在学术与产业上的重大突破。本文深入探讨大型模型从设计到部署的全过程,涉及数据预处理、模型架构(如Transformer)、训练技巧及模型压缩技术,旨在面对挑战时提供解决方案,促进AI技术的实用化进程。
69 1
|
3月前
|
机器学习/深度学习 算法 Python
**《惊世发现!揭开机器学习 k-近邻算法测试的神秘面纱,震撼你的认知边界!》**
【8月更文挑战第16天】k-近邻算法(kNN)是机器学习中一种直观且有效的分类与回归方法。它基于距离度量,对新样本找到训练集中最近的k个邻居并根据多数表决预测类别。通过示例展示了如何使用Python和`sklearn`库实现kNN,并采用交叉验证优化k值以提高模型的稳定性和准确性。充分测试kNN有助于在实际问题中发挥其最大效能。
32 1
|
3月前
|
人工智能 自然语言处理 Python
🔍显微镜下的AI魔法:深入剖析生成式模型提示词工程,细节决定成败🔍
【8月更文挑战第1天】在人工智能领域,生成式模型作为连接现实与想象的桥梁展现出独特创造力。提示词工程在此扮演关键角色,通过精细调整引发内容生成的重大变化。以创意广告生成为例:初始宽泛提示词难以激发独特文案,经深度剖析与微调后,加入情感元素的提示词能更好引导模型创造共鸣内容。示例代码模拟此过程,展示优化提示词的重要性,强调细节在生成式AI中的决定性作用。
63 8
|
4月前
|
Web App开发
生成式模型不只会模仿!哈佛、UCSB等最新成果:性能可超越训练集专家水平
【7月更文挑战第23天】研究人员从哈佛大学、UC Santa Barbara等机构展示了生成式模型的新突破:在特定任务上实现超越训练集专家水平的性能。通过“低温度采样”减少模型不确定性,实验中一个名为ChessFormer的模型在下棋任务上表现出了超越性,即性能超过了训练集中专家的平均水平。这项工作揭示了生成式模型在特定条件下实现超越的可能性,为该领域的研究和应用提供了新视角。[论文](https://arxiv.org/pdf/2406.11741)
34 2
|
机器学习/深度学习 人工智能 安全
调查分析两百余篇大模型论文,数十位研究者一文综述RLHF的挑战与局限
调查分析两百余篇大模型论文,数十位研究者一文综述RLHF的挑战与局限
328 0
|
机器学习/深度学习 人工智能 算法
人工智能机器学习底层原理剖析,人造神经元,您一定能看懂,通俗解释把AI“黑话”转化为“白话文”
按照固有思维方式,人们总以为人工智能是一个莫测高深的行业,这个行业的人都是高智商人群,无论是写文章还是和人讲话,总是讳莫如深,接着就是蹦出一些“高级”词汇,什么“神经网络”,什么“卷积神经”之类,教人半懂不懂的。尤其ChatGPT的风靡一时,更加“神话”了这个行业,用鲁迅先生形容诸葛武侯的话来讲:“多智而近妖”。 事实上,根据二八定理,和别的行业一样,人工智能行业内真正顶尖的天才也就是20%,他们具备真正的行业颠覆能力,可以搞出像ChatGPT这种“工业革命”级别的产品,而剩下的80%也不过就是普通人,每天的工作和我们这些人一样,枯燥且乏味,而之所以会出现类似“行业壁垒”的现象,是因为这个行
人工智能机器学习底层原理剖析,人造神经元,您一定能看懂,通俗解释把AI“黑话”转化为“白话文”
|
机器学习/深度学习 编解码 人工智能
斯坦福最新研究警告:别太迷信大模型涌现能力,那是度量选择的结果(1)
斯坦福最新研究警告:别太迷信大模型涌现能力,那是度量选择的结果
177 0
|
机器学习/深度学习
斯坦福最新研究警告:别太迷信大模型涌现能力,那是度量选择的结果(2)
斯坦福最新研究警告:别太迷信大模型涌现能力,那是度量选择的结果
167 0
|
Web App开发 机器学习/深度学习 人工智能
一场关于ChatGPT话语权的深度思考:人类会在大模型中迷失自我吗?
一场关于ChatGPT话语权的深度思考:人类会在大模型中迷失自我吗?
163 0