AI终于能听懂宝宝说话了!ChildMandarin:智源研究院开源的低幼儿童中文语音数据集,覆盖22省方言

简介: ChildMandarin是由智源研究院与南开大学联合推出的开源语音数据集,包含41.25小时3-5岁儿童普通话语音数据,覆盖中国22个省级行政区,为儿童语音识别和语言发展研究提供高质量数据支持。

❤️ 如果你也关注 AI 的发展现状,且对 AI 应用开发感兴趣,我会每日分享大模型与 AI 领域的开源项目和应用,提供运行实例和实用教程,帮助你快速上手AI技术!

🥦 AI 在线答疑 -> 智能检索历史文章和开源项目 -> 丰富的 AI 工具库 -> 每日更新 -> 尽在微信公众号 -> 搜一搜:蚝油菜花 🥦


🎙️ "AI终于能听懂宝宝说话了!41小时真实童声数据集开源,覆盖22省方言"
大家好,我是蚝油菜花。当主流语音模型还在用成人数据训练时,这个由顶尖学术机构打造的开源项目,正在攻克AI听不懂"奶音"的世界难题——

你是否见过这些AI翻车现场:

  • 👶 智能音箱把孩子的"我要吃糖"听成"我要吃汤"
  • 🎤 教育APP无法识别幼儿模糊发音,挫败学习兴趣
  • 📱 声纹锁对双胞胎童声束手无策,安全形同虚设...

今天揭秘的 ChildMandarin 数据集,用三大突破重塑儿童语音技术:

  • 真实自然对话:家长引导式采集,保留重复/停顿等语言发展特征
  • 地域声纹图谱:397名儿童覆盖22省,包含方言过渡发音样本
  • 多模态标注:精确到字符的转录+口音等级+设备信息

已有团队用它将儿童ASR错误率降低42%,接下来带你拆解这个数据金矿的技术细节!

🚀 快速阅读

ChildMandarin是专为3-5岁儿童设计的普通话语音数据集。

  1. 数据规模:包含41.25小时高质量语音,来自397名儿童,覆盖22个省级行政区。
  2. 技术特性:采用家长引导式对话采集,专业手动标注,支持多种语音任务。

ChildMandarin 是什么

ChildMandarin

ChildMandarin 是智源研究院联合南开大学计算机学院人类语言技术实验室(HLT Lab)共同推出的,针对3-5岁儿童的普通话语音数据集。数据集包含41.25小时的语音数据,来自397名儿童,覆盖中国22个省级行政区,性别分布均衡。

数据用智能手机录制,确保高质量音频。ChildMandarin核心特点是自然真实交互,用家长引导式对话采集方式,模拟自然交流场景。数据集填补了低幼儿童语音研究的空白,推动儿童语音识别、语言发展研究及智能语音交互系统的发展。

ChildMandarin 的主要功能

  • 语音识别:为自动语音识别(ASR)模型提供大量3-5岁儿童的自然语音数据,提升儿童语音识别的准确性和鲁棒性。
  • 说话人验证:支持说话人验证(SV)任务,帮助识别和区分不同儿童的声音,用在儿童身份认证等场景。
  • 语言研究:为儿童语言发展研究提供数据支持,助力开发儿童语言学习工具和互动教育系统。

ChildMandarin 的技术原理

  • 数据采集:用家长引导式对话的方式,模拟自然交流场景,确保语音数据的真实性和自然性。数据采集覆盖中国22个省级行政区,确保不同地域口音的多样性。用智能手机(Android和iPhone)进行录音,确保音频质量高,采样率为16kHz,精度为16位。
  • 数据标注:由专业转录人员进行手动标注,包括儿童的发音、停顿、重复等自然语言现象。标注说话人的年龄、性别、出生地、录音设备、口音等级等信息。
  • 模型训练和评估:用多种ASR模型(如Transformer、Conformer、Paraformer)进行训练和评估,基于CTC、AED、RNN-T等技术。对预训练模型(如HuBERT、Whisper)进行微调,用在大规模数据上学习到的特征,提升儿童语音识别的性能。用说话人嵌入提取模型(如x-vector、ECAPA-TDNN、ResNet-TDNN)进行说话人验证任务,评估模型在儿童语音上的表现。
  • 数据集设计:数据集分为训练集、验证集和测试集,确保模型训练和评估的科学性和有效性。基于多样化的数据采集和标注,确保数据集能够覆盖不同年龄段、性别、地域和口音的儿童语音。

资源


❤️ 如果你也关注 AI 的发展现状,且对 AI 应用开发感兴趣,我会每日分享大模型与 AI 领域的开源项目和应用,提供运行实例和实用教程,帮助你快速上手AI技术!

🥦 AI 在线答疑 -> 智能检索历史文章和开源项目 -> 丰富的 AI 工具库 -> 每日更新 -> 尽在微信公众号 -> 搜一搜:蚝油菜花 🥦

相关实践学习
达摩院智能语音交互 - 声纹识别技术
声纹识别是基于每个发音人的发音器官构造不同,识别当前发音人的身份。按照任务具体分为两种: 声纹辨认:从说话人集合中判别出测试语音所属的说话人,为多选一的问题 声纹确认:判断测试语音是否由目标说话人所说,是二选一的问题(是或者不是) 按照应用具体分为两种: 文本相关:要求使用者重复指定的话语,通常包含与训练信息相同的文本(精度较高,适合当前应用模式) 文本无关:对使用者发音内容和语言没有要求,受信道环境影响比较大,精度不高 本课程主要介绍声纹识别的原型技术、系统架构及应用案例等。 讲师介绍: 郑斯奇,达摩院算法专家,毕业于美国哈佛大学,研究方向包括声纹识别、性别、年龄、语种识别等。致力于推动端侧声纹与个性化技术的研究和大规模应用。
相关文章
|
2月前
|
人工智能 中间件 数据库
沐曦 GPU 融入龙蜥,共筑开源 AI 基础设施新底座
沐曦自加入社区以来,一直与龙蜥社区在推动 AIDC OS 的开源社区建设等方面保持合作。
|
2月前
|
人工智能 监控 安全
人体姿态[站着、摔倒、坐、深蹲、跑]检测数据集(6000张图片已划分、已标注)| AI训练适用于目标检测
本数据集包含6000张已标注人体姿态图片,覆盖站着、摔倒、坐、深蹲、跑五类动作,按5:1划分训练集与验证集,标注格式兼容YOLO等主流框架,适用于跌倒检测、健身分析、安防监控等AI目标检测任务,开箱即用,助力模型快速训练与部署。
|
2月前
|
人工智能 监控 算法
人群计数、行人检测数据集(9000张图片已划分、已标注) | AI训练适用于目标检测任务
本数据集包含9000张已标注、已划分的行人图像,适用于人群计数与目标检测任务。支持YOLO等主流框架,涵盖街道、商场等多种场景,标注精准,结构清晰,助力AI开发者快速训练高精度模型,应用于智慧安防、人流统计等场景。
人群计数、行人检测数据集(9000张图片已划分、已标注) | AI训练适用于目标检测任务
|
2月前
|
人工智能 运维 Java
Spring AI Alibaba Admin 开源!以数据为中心的 Agent 开发平台
Spring AI Alibaba Admin 正式发布!一站式实现 Prompt 管理、动态热更新、评测集构建、自动化评估与全链路可观测,助力企业高效构建可信赖的 AI Agent 应用。开源共建,现已上线!
3291 45
|
2月前
|
机器学习/深度学习 人工智能 算法
用于实验室智能识别的目标检测数据集(2500张图片已划分、已标注) | AI训练适用于目标检测任务
本数据集包含2500张已标注实验室设备图片,涵盖空调、灭火器、显示器等10类常见设备,适用于YOLO等目标检测模型训练。数据多样、标注规范,支持智能巡检、设备管理与科研教学,助力AI赋能智慧实验室建设。
用于实验室智能识别的目标检测数据集(2500张图片已划分、已标注) | AI训练适用于目标检测任务
|
2月前
|
机器学习/深度学习 人工智能 监控
面向智慧牧场的牛行为识别数据集(5000张图片已划分、已标注) | AI训练适用于目标检测任务
本数据集包含5000张已标注牛行为图片,涵盖卧、站立、行走三类,适用于YOLO等目标检测模型训练。数据划分清晰,标注规范,场景多样,助力智慧牧场、健康监测与AI科研。
面向智慧牧场的牛行为识别数据集(5000张图片已划分、已标注) | AI训练适用于目标检测任务
|
2月前
|
人工智能 自然语言处理 Shell
我们开源了一款 AI 驱动的用户社区
KoalaQA 是一款开源的 AI 驱动用户社区,支持智能问答、语义搜索、自动运营与辅助创作,助力企业降低客服成本,提升响应效率与用户体验。一键部署,灵活接入大模型,快速构建专属售后服务社区。
257 5
我们开源了一款 AI 驱动的用户社区
|
2月前
|
人工智能 搜索推荐 UED
一个牛逼的国产AI自动化工具,开源了 !
AiPy是国产开源AI工具,结合大语言模型与Python,支持本地部署。用户只需用自然语言描述需求,即可自动生成并执行代码,轻松实现数据分析、清洗、可视化等任务,零基础也能玩转编程,被誉为程序员的智能助手。
|
3月前
|
人工智能 安全 架构师
开放、协同,2025 云栖大会“操作系统开源与 AI 进化分论坛”精彩回顾
唯有通过生态开放与技术共享,才能加速 AI 技术的普惠与产业化落地。

热门文章

最新文章