YOLOv8改进 | Neck篇 | 2024.1最新MFDS-DETR的HS-FPN改进特征融合层(降低100W参数,全网独家首发)

简介: YOLOv8改进 | Neck篇 | 2024.1最新MFDS-DETR的HS-FPN改进特征融合层(降低100W参数,全网独家首发)

一、本文介绍

本文给大家带来的改进机制是最近这几天最新发布的改进机制MFDS-DETR提出的一种HS-FPN结构,其是一种为白细胞检测设计的网络结构,主要用于解决白细胞数据集中的多尺度挑战。它的基本原理包括两个关键部分:特征选择模块特征融合模块,在本文的下面均会有讲解,这个结构是非常新颖的,代码仅仅更新了三天。其可以起到特征选择的作用,非常适合轻量化的读者来使用,其存在二次创新和多次创新的机会,在近期内我会对其进行更加轻量化和精度更高的二次创新,利用该结构参数量下降至197W,计算量降低至7.0GFLOPs,本文结构为我独家复现,全网目前无第二份大家可以抓紧使用。

欢迎大家订阅我的专栏一起学习YOLO!

image.png

专栏回顾:YOLOv8改进系列专栏——本专栏持续复习各种顶会内容——科研必备

二、HS-FPN原理

image.png

2.1 HS-FPN的基本原理

HS-FPN(High-level Screening-feature Fusion Pyramid Networks)是一种为白细胞检测设计的网络结构,主要用于解决白细胞数据集中的多尺度挑战。它的基本原理包括两个关键部分:特征选择模块特征融合模块

HS-FPN的结构如下图所示,包括两个主要组成部分:

image.png


1. 特征选择模块:该模块利用通道注意力(CA)和维度匹配(DM)机制对不同尺度的特征图进行筛选。通过池化操作(如全局平均池化和全局最大池化)和权重计算,该模块有效地提取了每个通道中的重要信息。

2. 特征融合模块:该模块通过选择性特征融合(SFF)机制将筛选后的低级特征和高级特征结合起来。高级特征扩展后,通过双线性插值或转置卷积进行尺度调整,然后与低级特征融合,从而增强模型对白细胞特征的表达能力。

总的来说,HS-FPN通过这两个模块协同工作,有效地解决了白细胞检测中的多尺度问题,提高了检测的准确性和鲁棒性。

2.2 SSF模块

选择性特征融合(Selective Feature Fusion, SFF)是HS-FPN网络中的一个关键组件,它的主要作用是融合不同尺度的特征图。SFF通过使用高级特征作为权重来过滤低尺度特征中的重要信息。在这个过程中,高级特征经过转置卷积和双线性插值操作进行尺度调整,以匹配低尺度特征的尺寸。然后,利用高级特征作为注意力权重,筛选出低尺度特征中有用的信息。这种融合方法能够有效地结合高级特征的语义信息和低尺度特征的细节信息,从而提高模型在处理多尺度问题时的性能。

下图为大家展示了SFF模块的框架结构:

image.png



给定一个输入高级特征

image.png

和一个输入低尺度特征

image.png

,高级特征首先使用一个大小为2,核大小为3x3的转置卷积(T-Conv)进行扩展,得到特征大小

image.png

然后,为了统一高级特征和低尺度特征的维度,作者使用双线性插值来向上或向下采样高级特征,得到特征

image.png

。接下来,使用CA模块将高级特征转换为相应的注意力权重,以过滤低尺度特征,在获得具有相同维度的特征后。

最后,将过滤后的低尺度特征与高级特征融合,以增强模型的特征表示,并得到

image.png

。方程(1)和(2)说明了特征选择的融合过程:

image.png


目录
相关文章
YOLOv5改进 | Neck篇 | 2024.1最新MFDS-DETR的HS-FPN改进特征融合层(轻量化Neck、全网独家首发)
YOLOv5改进 | Neck篇 | 2024.1最新MFDS-DETR的HS-FPN改进特征融合层(轻量化Neck、全网独家首发)
932 4
|
机器学习/深度学习 Go 计算机视觉
YOLOv8改进 | Neck篇 | 利用ASF-YOLO改进特征融合层(适用于分割和目标检测)
YOLOv8改进 | Neck篇 | 利用ASF-YOLO改进特征融合层(适用于分割和目标检测)
988 1
|
机器学习/深度学习 编解码 自动驾驶
全新高性能 FPN | ssFPN 教您如何修改 FPN 让大小目标在目标检测中都有提升!!!
全新高性能 FPN | ssFPN 教您如何修改 FPN 让大小目标在目标检测中都有提升!!!
766 0
全新高性能 FPN | ssFPN 教您如何修改 FPN 让大小目标在目标检测中都有提升!!!
|
9月前
|
机器学习/深度学习 C语言 计算机视觉
YOLOv11改进策略【Neck】| HS-FPN:高级筛选特征融合金字塔,加强细微特征的检测
YOLOv11改进策略【Neck】| HS-FPN:高级筛选特征融合金字塔,加强细微特征的检测
848 11
YOLOv11改进策略【Neck】| HS-FPN:高级筛选特征融合金字塔,加强细微特征的检测
|
编解码 Go 文件存储
【YOLOv8改进 - 特征融合NECK】 DAMO-YOLO之RepGFPN :实时目标检测的创新型特征金字塔网络
【YOLOv8改进 - 特征融合NECK】 DAMO-YOLO之RepGFPN :实时目标检测的创新型特征金字塔网络
|
计算机视觉
【YOLOv8改进 - 特征融合NECK】 HS-FPN :用于处理多尺度特征融合的网络结构,降低参数
MFDS-DETR是针对白细胞检测的创新方法,它通过HS-FPN和可变形自注意力解决规模差异和特征稀缺问题。HS-FPN利用通道注意力模块增强特征表达,改善多尺度挑战。代码和数据集可在给定链接获取。此方法在WBCDD、LISC和BCCD数据集上表现优越,证明了其有效性和通用性。YOLO系列文章提供了更多目标检测改进和实战案例。
|
并行计算 数据挖掘 PyTorch
【YOLOv8改进 - 特征融合】DySample :超轻量级且高效的动态上采样器
【YOLOv8改进 - 特征融合】DySample :超轻量级且高效的动态上采样器
【YOLOv8改进 - 特征融合】DySample :超轻量级且高效的动态上采样器
|
计算机视觉 网络架构
【YOLOv8改进 - 卷积Conv】DWRSeg:扩张式残差分割网络,提高特征提取效率和多尺度信息获取能力,助力小目标检测
YOLO目标检测专栏探讨了YOLO的创新改进,如多尺度特征提取的DWRSeg网络。该网络通过区域残差化和语义残差化提升效率,使用DWR和SIR模块优化高层和低层特征。DWRSeg在Cityscapes和CamVid数据集上表现优秀,速度与准确性兼备。论文和代码已公开。核心代码展示了一个包含DWR模块的卷积层。更多配置详情见相关链接。
|
机器学习/深度学习 移动开发 自然语言处理
【YOLOv8改进- 多模块融合改进】GhostConv + ContextAggregation 幽灵卷积与上下文聚合模块融合改进,助力小目标高效涨点
【YOLOv8改进- 多模块融合改进】GhostConv + ContextAggregation 幽灵卷积与上下文聚合模块融合改进,助力小目标高效涨点
|
机器学习/深度学习 自然语言处理 并行计算
【YOLOv8改进 -注意力机制】Mamba之MLLAttention :基于Mamba和线性注意力Transformer的模型
YOLOv8专栏探讨了该目标检测模型的创新改进,包括使用Mamba模型的线性注意力Transformer变体,称为MLLA。Mamba的成功关键在于遗忘门和块设计,MLLA结合了这些优点,提升了视觉任务的性能。文章提供全面分析,并提出MLLA模型,其在效率和准确性上超过多种视觉模型。论文和代码可在提供的链接中找到。MLLA Block的代码示例展示了如何整合关键组件以实现高效运算。更多配置详情见相关链接。