【YOLOv8改进-卷积Conv】DualConv( Dual Convolutional):用于轻量级深度神经网络的双卷积核

简介: **摘要:**我们提出DualConv,一种融合$3\times3$和$1\times1$卷积的轻量级DNN技术,适用于资源有限的系统。它通过组卷积结合两种卷积核,减少计算和参数量,同时增强准确性。在MobileNetV2上,参数减少54%,CIFAR-100精度仅降0.68%。在YOLOv3中,DualConv提升检测速度并增4.4%的PASCAL VOC准确性。论文及代码已开源。

摘要

CNN架构通常对内存和计算资源的要求较高,这使得它们在硬件资源有限的嵌入式系统中难以实现。我们提出了一种用于构建轻量级深度神经网络的双卷积核(DualConv)方法。DualConv结合了$3 \times 3$和$1 \times 1$的卷积核,同时处理相同的输入特征图通道,并利用组卷积技术高效地排列卷积滤波器。DualConv可以应用于任何CNN模型,例如用于图像分类的VGG-16和ResNet-50,用于目标检测的YOLO和R-CNN,或用于语义分割的FCN。在本文中,我们广泛测试了DualConv在分类任务中的表现,因为这些网络架构构成了许多其他任务的骨干。我们还测试了DualConv在YOLO-V3上的图像检测性能。实验结果表明,结合我们的结构创新,DualConv显著减少了深度神经网络的计算成本和参数数量,同时在某些情况下,令人惊讶地实现了比原始模型稍高的准确性。我们使用DualConv进一步减少了轻量级MobileNetV2的参数数量54%,在CIFAR-100数据集上仅下降了0.68%的准确性。当参数数量不是问题时,DualConv在相同数据集上将MobileNetV1的准确性提高了4.11%。此外,DualConv显著提升了YOLO-V3的目标检测速度,并在PASCAL VOC数据集上将其准确性提高了4.4%。

# YOLO目标检测创新改进与实战案例专栏

专栏目录: YOLO有效改进系列及项目实战目录 包含卷积,主干 注意力,检测头等创新机制 以及 各种目标检测分割项目实战案例
专栏链接: YOLO基础解析+创新改进+实战案例

介绍

文章链接

论文地址:论文地址

代码地址:代码地址

基本原理

DualConv是一种创新的深度神经网络技术,旨在构建轻量级的深度神经网络。

双重卷积核结构 :

DualConv结合了3x3和1x1卷积核,同时处理相同的输入特征图通道。通过这种结合,DualConv能够在保持准确性的同时降低网络的计算成本和参数数量。

  1. 3x3卷积核的作用

    • 3x3卷积核通常用于捕获局部特征和空间信息,有助于提取输入特征图的细粒度特征。
    • 在双重卷积核结构中,3x3卷积核负责处理输入特征图的通道维度,从而实现对特征的深度提取和表征。
  2. 1x1卷积核的作用

    • 1x1卷积核通常用于减少特征图的通道数量,降低计算成本和参数数量,同时有助于特征的融合和压缩。
    • 在双重卷积核结构中,1x1卷积核与3x3卷积核结合使用,可以在保持准确性的同时实现参数的有效压缩和计算的高效性。
  3. 同时处理的优势

    • 双重卷积核结构使得3x3和1x1卷积核能够同时处理相同的输入特征图通道,从而加快计算速度,提高网络的效率和性能。
    • 同时处理不同类型的卷积核有助于网络在不同尺度上捕获特征信息,并有效地融合这些信息,提高网络的表征能力和泛化能力。
  4. 参数减少与性能提升

    • 双重卷积核结构通过结合3x3和1x1卷积核,实现了在轻量级深度神经网络中提高准确性、降低计算成本和参数数量的目标。
    • 这种结构的设计使得网络在保持高准确性的同时,具有更高的计算效率和更少的参数量,适合在资源受限的环境中部署和应用。

总的来说,双重卷积核结构的技术原理在于充分利用3x3和1x1卷积核的优势,同时处理输入特征图通道,实现了在深度神经网络中提高效率、准确性和泛化能力的目标。

image-20240605170130004

核心代码

import torch.nn as nn

class DualConv(nn.Module):

    def __init__(self, in_channels, out_channels, stride, g=2):
        """
        初始化 DualConv 类。
        :param in_channels: 输入通道数
        :param out_channels: 输出通道数
        :param stride: 卷积步幅
        :param g: 用于 DualConv 的分组卷积组数
        """
        super(DualConv, self).__init__()
        # 分组卷积
        self.gc = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=stride, padding=1, groups=g, bias=False)
        # 逐点卷积
        self.pwc = nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=stride, bias=False)

    def forward(self, input_data):
        """
        定义 DualConv 如何处理输入图像或输入特征图。
        :param input_data: 输入图像或输入特征图
        :return: 返回输出特征图
        """
        # 同时进行分组卷积和逐点卷积,然后将结果相加
        return self.gc(input_data) + self.pwc(input_data)
相关文章
|
12天前
|
机器学习/深度学习 人工智能 算法
猫狗宠物识别系统Python+TensorFlow+人工智能+深度学习+卷积网络算法
宠物识别系统使用Python和TensorFlow搭建卷积神经网络,基于37种常见猫狗数据集训练高精度模型,并保存为h5格式。通过Django框架搭建Web平台,用户上传宠物图片即可识别其名称,提供便捷的宠物识别服务。
157 55
|
22天前
|
机器学习/深度学习 人工智能 算法
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
宠物识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了37种常见的猫狗宠物种类数据集【'阿比西尼亚猫(Abyssinian)', '孟加拉猫(Bengal)', '暹罗猫(Birman)', '孟买猫(Bombay)', '英国短毛猫(British Shorthair)', '埃及猫(Egyptian Mau)', '缅因猫(Maine Coon)', '波斯猫(Persian)', '布偶猫(Ragdoll)', '俄罗斯蓝猫(Russian Blue)', '暹罗猫(Siamese)', '斯芬克斯猫(Sphynx)', '美国斗牛犬
122 29
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
|
26天前
|
机器学习/深度学习 资源调度 算法
图卷积网络入门:数学基础与架构设计
本文系统地阐述了图卷积网络的架构原理。通过简化数学表述并聚焦于矩阵运算的核心概念,详细解析了GCN的工作机制。
68 3
图卷积网络入门:数学基础与架构设计
|
21天前
|
机器学习/深度学习 人工智能 自然语言处理
深入理解深度学习中的卷积神经网络(CNN)##
在当今的人工智能领域,深度学习已成为推动技术革新的核心力量之一。其中,卷积神经网络(CNN)作为深度学习的一个重要分支,因其在图像和视频处理方面的卓越性能而备受关注。本文旨在深入探讨CNN的基本原理、结构及其在实际应用中的表现,为读者提供一个全面了解CNN的窗口。 ##
|
1月前
|
机器学习/深度学习 人工智能 自然语言处理
深度学习中的卷积神经网络(CNN): 从理论到实践
本文将深入浅出地介绍卷积神经网络(CNN)的工作原理,并带领读者通过一个简单的图像分类项目,实现从理论到代码的转变。我们将探索CNN如何识别和处理图像数据,并通过实例展示如何训练一个有效的CNN模型。无论你是深度学习领域的新手还是希望扩展你的技术栈,这篇文章都将为你提供宝贵的知识和技能。
176 7
|
28天前
|
机器学习/深度学习 自然语言处理 算法
深入理解深度学习中的卷积神经网络(CNN)
深入理解深度学习中的卷积神经网络(CNN)
38 1
|
1月前
|
机器学习/深度学习 人工智能 自然语言处理
探索深度学习中的卷积神经网络(CNN)及其在现代应用中的革新
探索深度学习中的卷积神经网络(CNN)及其在现代应用中的革新
|
1月前
|
机器学习/深度学习 人工智能 自然语言处理
深度学习中的卷积神经网络(CNN)及其在图像识别中的应用
本文旨在通过深入浅出的方式,为读者揭示卷积神经网络(CNN)的神秘面纱,并展示其在图像识别领域的实际应用。我们将从CNN的基本概念出发,逐步深入到网络结构、工作原理以及训练过程,最后通过一个实际的代码示例,带领读者体验CNN的强大功能。无论你是深度学习的初学者,还是希望进一步了解CNN的专业人士,这篇文章都将为你提供有价值的信息和启发。
|
1月前
|
机器学习/深度学习 人工智能 网络架构
深入理解深度学习中的卷积神经网络(CNN)
深入理解深度学习中的卷积神经网络(CNN)
46 1
|
1月前
|
机器学习/深度学习 人工智能 算法框架/工具
深度学习中的卷积神经网络(CNN)入门
【10月更文挑战第41天】在人工智能的璀璨星空下,卷积神经网络(CNN)如一颗耀眼的新星,照亮了图像处理和视觉识别的路径。本文将深入浅出地介绍CNN的基本概念、核心结构和工作原理,同时提供代码示例,带领初学者轻松步入这一神秘而又充满无限可能的领域。

热门文章

最新文章