你要的AI Agent工具都在这里

本文涉及的产品
阿里云百炼推荐规格 ADB PostgreSQL,4核16GB 100GB 1个月
简介: 只有让LLM(大模型)学会使用工具,才能做出一系列实用的AI Agent,才能发挥出LLM真正的实力。本篇,我们让AI Agent使用更多的工具,比如:外部搜索、分析CSV、文生图、执行代码等。

只有让LLM(大模型)学会使用工具,才能做出一系列实用的AI Agent,才能发挥出LLM真正的实力。本篇,我们让AI Agent使用更多的工具,比如:外部搜索、分析CSV、文生图、执行代码等。

1. 使用工具的必要性

LLM(大模型)如果没有使用工具的能力,那就相当于一个有着聪明大脑 但四肢僵硬的 渐冻人,什么事儿也做不了。人类之所以区别于动物,正是因为学会了使用工具。因此,赋予LLM使用工具的能力至关重要。

我们需要 LLM去帮助执行各种任务。而Tool(工具)就是LLM 在执行任务过程中,能够调用的外部能力。比如:需要检索外部资料时,可以调用检索工具;需要执行一段代码时,可以调用自定义函数去执行。

2. LangChain的Tool规范

所有的工具肯定要遵守一套规范,才能让LLM随意调用。为此,LangChain 抽象出一个Tool 层,只要是遵守这套规范的函数就是 Tool 对象,就可以被 LLM调用。

2.1. Tool规范

Tool的规范也简单,只要有三个属性就行:namedescriptionfunction

  • name:工具的名称。
  • description:对工具的功能描述,后续这个描述文本会添加到Prompt(提示词)中,LLM 将根据description来决定是否调用该工具。
  • function:此工具实际运行的函数。

只要遵守这个规范就行,使用形式可以有多种,下文的实践代码会介绍到。

2.2. Agent使用工具的流程

让AI Agent使用工具,需要定义AgentAgentExecutorAgentExecutor维护了Tool.nameToolMap 结构。

LLM根据Prompt(包含了Tool的描述) 和 用户的问题,判断是否需要调用工具,确定某个工具后,在根据Tool的名称 和 调用参数,到映射Map 中获找Tool实例,找到之后调用Tool实例的function

3. 如何使用各种Tool

自定义Tool只需要遵守以上规范就可以,下面以几个常用的工具做示例。

下文有些工具用到了toolkitstoolkitsLangChain提供的工具包,旨在简化使用工具的成本toolkits里提供了丰富的工具,还在不断叠加,大部分的工具都可以在里面找到。

3.1. 外部搜索

使用外部搜索工具。本文使用的是serpapiserpapi集成了Google、百度等多家搜索引擎,通过api的形式调用,非常方便。

官网地址:https://serpapi.com/。可以自行注册,有一些免费额度。外部搜索工具定义如下:

# 1. 使用@tool装饰器,定义搜索工具
@tool
def search(query: str) -> str:
    """只有在需要了解实时信息 或 不知道的事情的时候 才会使用这个工具,需要传入要搜索的内容。"""
    serp = SerpAPIWrapper()
    result = serp.run(query)
    return result

3.2. 文生图

文生图工具是使用LangChain社区提供的DallEAPIWrapper类,本文使用OpenAI的图片生成模型Dall-E-3,具体代码如下:

# 2. 使用Tool工具类,定义图片生成工具
dalle_image_generator = Tool(
    name="基于OpenAI Dall-E-3的图片生成器",
    func=DallEAPIWrapper(model="dall-e-3").run,
    description="OpenAI DALL-E API 的包装器。当你需要根据 描述的文本 生成图像时 使用此工具,需要传入 对于图像的描述。",
)

这里的DallEAPIWrapper(model="dall-e-3").run方法就是个函数,实际是去调用了OpenAI的接口。

3.3. 代码执行器

代码执行器工具,可以执行代码 或者 根据自然语言生成代码。主要使用LangChain提供的PythonREPLTool 和 LangChain提供的toolkits

比如create_python_agent就简化了创建Python解释器工具的过程。代码如下:

# 3. 使用toolkit,定义执行Python代码工具
python_agent_executor = create_python_agent(
    llm=model,
    tool=PythonREPLTool(),
    verbose=True,
    agent_executor_kwargs={"handle_parsing_errors": True},
)

3.4. 分析CSV

CSV工具,用来分析csv文件。依旧是使用toolkits工具包里的create_csv_agent函数快出创建工具。代码如下:

# 4. 使用toolkit,定义分析CSV文件工具
csv_agent_executor = create_csv_agent(
    llm=model,
    path="course_price.csv",
    verbose=True,
    agent_executor_kwargs={"handle_parsing_errors": True},
    allow_dangerous_code=True,
)

3.5. 完整代码

上面介绍了AI Agent的常用工具,定义好工具之后,在把工具放入到工具集中,最后在定义Agent 和 AgentExecutor就算完成了。短短几十行代码,就可以让LLM使用这么多工具了。

完整代码如下:

import os
from langchain import hub
from langchain_openai import ChatOpenAI
from langchain.agents import create_structured_chat_agent, AgentExecutor, Tool
from langchain.tools import BaseTool, StructuredTool, tool
from langchain_experimental.agents.agent_toolkits import (
    create_python_agent,
    create_csv_agent,
)
from langchain_community.utilities import SerpAPIWrapper
from langchain_experimental.tools import PythonREPLTool
from langchain_community.utilities.dalle_image_generator import DallEAPIWrapper

# 需要先安装serpapi, pip install serpapi, 还需要到 https://serpapi.com/ 去注册账号

# SERPAPI_API_KEY 和 OPENAI 相关密钥,注册到环境变量
os.environ["SERPAPI_API_KEY"] = (
    "9dd2b2ee429ed996c75c1daf7412df16336axxxxxxxxxxxxxxx"
)
os.environ["OPENAI_API_KEY"] = "sk-a3rrW46OOxLBv9hdfQPBKFZtY7xxxxxxxxxxxxxxxx"
os.environ["OPENAI_API_BASE"] = "https://api.302.ai/v1"

model = ChatOpenAI(model_name="gpt-3.5-turbo")


# 基于reAct机制的Prompt模板
prompt = hub.pull("hwchase17/structured-chat-agent")



# 各种方式定义工具

# 1. 使用@tool装饰器,定义搜索工具
@tool
def search(query: str) -> str:
    """只有在需要了解实时信息 或 不知道的事情的时候 才会使用这个工具,需要传入要搜索的内容。"""
    serp = SerpAPIWrapper()
    result = serp.run(query)
    return result


# 2. 使用Tool工具类,定义图片生成工具
dalle_image_generator = Tool(
    name="基于OpenAI Dall-E-3的图片生成器",
    func=DallEAPIWrapper(model="dall-e-3").run,
    description="OpenAI DALL-E API 的包装器。当你需要根据 描述的文本 生成图像时 使用此工具,需要传入 对于图像的描述。",
)

# 3. 使用toolkit,定义执行Python代码工具
python_agent_executor = create_python_agent(
    llm=model,
    tool=PythonREPLTool(),
    verbose=True,
    agent_executor_kwargs={"handle_parsing_errors": True},
)

# 4. 使用toolkit,定义分析CSV文件工具
csv_agent_executor = create_csv_agent(
    llm=model,
    path="course_price.csv",
    verbose=True,
    agent_executor_kwargs={"handle_parsing_errors": True},
    allow_dangerous_code=True,
)

# 定义工具集合
tool_list = [
    search,
    dalle_image_generator,
    Tool(
        name="Python代码工具",
        description="""
        当你需要借助Python解释器时,使用这个工具。
        比如当你需要执行python代码时,
        或者,当你想根据自然语言的描述生成对应的代码时,让它生成Python代码,并返回代码执行的结果。
        """,
        func=python_agent_executor.invoke,
    ),
    Tool(
        name="CSV分析工具",
        description="""
        当你需要回答有关course_price.csv文件的问题时,使用这个工具。
        它接受完整的问题作为输入,在使用Pandas库计算后,返回答案。
        """,
        func=csv_agent_executor.invoke,
    ),
]


# 将工具丢给Agent
agent = create_structured_chat_agent(
    llm=model,
    tools=tool_list,
    prompt=prompt
)

# 定义AgentExecutor
agent_executor = AgentExecutor.from_agent_and_tools(
    agent=agent, 
    tools=tool_list, 
    verbose=True, # 打印详细的 选择工具的过程 和 reAct的分析过程
    handle_parsing_errors=True
)



# 不会使用工具
agent_executor.invoke({"input": "你是谁?"})

# 使用查询工具
# agent_executor.invoke({"input": "南京今天的温度是多少摄氏度?现在外面下雨吗?"})

# 使用Python代码工具
# agent_executor.invoke(
#     {
#         "input": """
#         帮我执行```号里的python代码,

#         ```python

#             def add(a,b):
#                 return a+b

#             print("hello world : ", add(100,200))
#

"""

}

)

使用图片生成工具

agent_executor.invoke(

{

"input": "帮我生成一副图片,图片描述如下:一个非常忙碌的中国高中生在准备中国的高考,夜已经很深了,旁边他的妈妈一边看书一边在陪伴他,窗外是模糊的霓虹灯。"

}

)

使用CSV分析工具

agent_executor.invoke({"input": "course_price数据集里,一共有哪几个城市?用中文回答"})

```

一起看下使用工具后,reAct的整个过程。

以上代码经过完整调试,更换下openai和serpapi的密钥即可直接运行,如果遇到问题可以关注公众号给我留言。

4. 总结

本文主要聊了AI Agent的工具规范,以及常用工具。AI Agent只有借助工具才能发挥威力。

=====>>>>>> 关于我 <<<<<<=====

本篇完结!欢迎点赞 关注 收藏!!!

原文链接:https://mp.weixin.qq.com/s/iSJExaJSCe7fXzous17pXg

相关实践学习
阿里云百炼xAnalyticDB PostgreSQL构建AIGC应用
通过该实验体验在阿里云百炼中构建企业专属知识库构建及应用全流程。同时体验使用ADB-PG向量检索引擎提供专属安全存储,保障企业数据隐私安全。
AnalyticDB PostgreSQL 企业智能数据中台:一站式管理数据服务资产
企业在数据仓库之上可构建丰富的数据服务用以支持数据应用及业务场景;ADB PG推出全新企业智能数据平台,用以帮助用户一站式的管理企业数据服务资产,包括创建, 管理,探索, 监控等; 助力企业在现有平台之上快速构建起数据服务资产体系
相关文章
|
6天前
|
存储 人工智能 自然语言处理
AI经营|多Agent择优生成商品标题
商品标题中关键词的好坏是商品能否被主搜检索到的关键因素,使用大模型自动优化标题成为【AI经营】中的核心能力之一,本文讲述大模型如何帮助商家优化商品素材,提升商品竞争力。
AI经营|多Agent择优生成商品标题
|
7天前
|
机器学习/深度学习 人工智能 搜索推荐
AI与娱乐产业:电影制作的新工具
随着科技的发展,人工智能(AI)逐渐渗透到电影制作中,带来了前所未有的创新。本文探讨了AI在剧本创作、场景构建、特效制作、动作捕捉、音频处理、剪辑及市场调研等领域的应用,以及其对提升效率、激发创意和拓宽视野的影响,展望了AI在未来电影产业中的重要作用。
|
7天前
|
人工智能 算法 搜索推荐
清华校友用AI破解162个高数定理,智能体LeanAgent攻克困扰陶哲轩难题!
清华校友开发的LeanAgent智能体在数学推理领域取得重大突破,成功证明了162个未被人类证明的高等数学定理,涵盖抽象代数、代数拓扑等领域。LeanAgent采用“持续学习”框架,通过课程学习、动态数据库和渐进式训练,显著提升了数学定理证明的能力,为数学研究和教育提供了新的思路和方法。
18 3
|
8天前
|
人工智能 自然语言处理 算法
企业内训|AI/大模型/智能体的测评/评估技术-某电信运营商互联网研发中心
本课程是TsingtaoAI专为某电信运营商的互联网研发中心的AI算法工程师设计,已于近日在广州对客户团队完成交付。课程聚焦AI算法工程师在AI、大模型和智能体的测评/评估技术中的关键能力建设,深入探讨如何基于当前先进的AI、大模型与智能体技术,构建符合实际场景需求的科学测评体系。课程内容涵盖大模型及智能体的基础理论、测评集构建、评分标准、自动化与人工测评方法,以及特定垂直场景下的测评实战等方面。
43 4
|
1月前
|
人工智能 IDE Java
AI 代码工具大揭秘:提高编程效率的必备神器!
【10月更文挑战第1天】近年来,人工智能得到了迅猛的发展,并在各行各业都得到了广泛应用。尤其是近两年来,AI开发工具逐渐成为开发者们的新宠,其中 GitHub Copilot 更是引发了无限可能性的探索。
96 9
AI 代码工具大揭秘:提高编程效率的必备神器!
|
1月前
|
人工智能 搜索推荐 程序员
AI 搜索引擎工具集合
AI 搜索引擎工具集合
AI 搜索引擎工具集合
|
1月前
|
人工智能 JavaScript 数据可视化
Cursor 、v0 和 Bolt.new:当今 AI 编程工具的全面解析与对比
本文对 Cursor AI、v0 和 Bolt.new 三大 AI 编程工具进行了全面比较,分析其各自优势与局限性,帮助开发者在不同工作流中灵活应用。
221 8
Cursor 、v0 和 Bolt.new:当今 AI 编程工具的全面解析与对比
|
1月前
|
人工智能 自然语言处理 算法
几款宝藏级AI阅读工具推荐!论文分析、文档总结必备神器!
【10月更文挑战第8天】几款宝藏级AI阅读工具推荐!论文分析、文档总结必备神器!
66 1
几款宝藏级AI阅读工具推荐!论文分析、文档总结必备神器!
|
20天前
|
人工智能 API 决策智能
swarm Agent框架入门指南:构建与编排多智能体系统的利器 | AI应用开发
Swarm是OpenAI在2024年10月12日宣布开源的一个实验性质的多智能体编排框架。其核心目标是让智能体之间的协调和执行变得更轻量级、更容易控制和测试。Swarm框架的主要特性包括轻量化、易于使用和高度可定制性,非常适合处理大量独立的功能和指令。【10月更文挑战第15天】
148 6
|
1月前
LangChain-26 Custom Agent 自定义一个Agent并通过@tool绑定对应的工具 同时让大模型自己调用编写的@tools函数
LangChain-26 Custom Agent 自定义一个Agent并通过@tool绑定对应的工具 同时让大模型自己调用编写的@tools函数
61 3
LangChain-26 Custom Agent 自定义一个Agent并通过@tool绑定对应的工具 同时让大模型自己调用编写的@tools函数

热门文章

最新文章