使用Elasticsearch映射定义索引结构

本文涉及的产品
检索分析服务 Elasticsearch 版,2核4GB开发者规格 1个月
简介: 使用Elasticsearch映射定义索引结构

在Elasticsearch中,**映射(Mapping)**是用于定义索引中文档字段的结构、类型及属性的重要组成部分。它相当于数据库表结构的设计,决定了如何对文档中的数据进行解析、存储和检索。本文将详细介绍映射的概念、支持的常规字段类型、如何忽略映射中不合法的数据、实现字段复制与字段存储,以及动态映射的运用。

映射概念与使用

映射定义了索引中每个字段的名称、类型及其特定属性。在创建索引或向索引中添加文档时,Elasticsearch会自动或手动应用映射规则。以下是一个简单的索引创建示例:

PUT first-index
{
  "settings": {
    "number_of_shards": "5",
    "number_of_replicas": "1"
  },
  "mappings": {
    "properties": {
      "content": {
        "type": "text"
      }
    }
  }
}

在这个例子中,我们创建了一个名为first-index的索引,并指定了其分片数和副本数。在mappings部分,定义了一个名为content的字段,类型为text。这样,当我们向该索引添加文档时,Elasticsearch会根据映射规则正确解析和处理content字段的内容。

常规字段类型

Elasticsearch支持多种字段类型以适应不同的数据需求。以下是一些常见的字段类型:

  • text: 用于全文本搜索的字符串类型,会被分词器进行分词处理。
  • keyword: 不分词的字符串类型,用于精确值匹配、排序或聚合。
  • date: 存储日期和时间数据,支持各种格式指定。
  • boolean: 存储布尔值。
  • geo_point: 存储地理坐标信息。
  • integerfloatdouble: 存储数值类型数据。
  • binary: 存储二进制数据。
  • object: 定义嵌套结构,包含多个子字段。
  • array: 存储一组相同类型的值。

例如,定义一个包含userid(text类型)、visittime(date类型,指定时间格式)和sex(boolean类型)的索引映射:

PUT mysougoulog
{
  "mappings": {
    "properties": {
      "userid": {
        "type": "text"
      },
      "visittime": {
        "type": "date",
        "format": "yyyy-MM-dd HH:mm:ss ||epoch_millis"
      },
      "sex": {
        "type": "boolean"
      }
    }
  }
}

忽略映射中不合法的数据

在某些场景下,可能需要对索引中某些字段的非法数据进行忽略而非导致整个文档插入失败。可以通过设置ignore_malformed属性来实现这一功能:

PUT ignore-test
{
  "mappings": {
    "properties": {
      "age": {
        "type": "integer"
      },
      "born": {
        "type": "date",
        "format": "yyyy-MM-dd HH:mm:ss",
        "ignore_malformed": true
      }
    }
  }
}

在上述映射中,born字段被设置为忽略不合法数据。当插入包含非法born值的文档时,Elasticsearch会忽略该字段的错误值并继续处理其他字段。

字段复制与字段存储

字段复制

通过copy_to属性,可以将一个或多个字段的值复制到另一个字段,便于进行全局搜索或其他复杂查询。例如,创建一个索引,将titleauthorabstract字段的值复制到full_text字段:

PUT copy-field
{
  "mappings": {
    "properties": {
      "title": {
        "type": "text",
        "copy_to": "full_text"
      },
      "author": {
        "type": "text",
        "copy_to": "full_text"
      },
      "abstract": {
        "type": "text",
        "copy_to": "full_text"
      },
      "full_text": {
        "type": "text"
      }
    }
  }
}

现在,可以通过查询full_text字段来同时搜索titleauthorabstract的内容:

POST copy-field/_search
{
  "query": {
    "match": {
      "full_text": "smith"
    }
  }
}

字段存储

默认情况下,Elasticsearch只存储原始文档的源数据和用于搜索的倒排索引。如果需要在搜索结果中直接返回某个字段的值,可以设置store属性为true,使字段值被持久化存储到磁盘:

PUT copy-store-field
{
  "mappings": {
    "properties": {
      "title": {
        "type": "text",
        "copy_to": "full_text"
      },
      "author": {
        "type": "text",
        "copy_to": "full_text"
      },
      "abstract": {
        "type": "text",
        "copy_to": "full_text"
      },
      "full_text": {
        "type": "text",
        "store": true
      }
    }
  }
}

查询时,使用stored_fields参数指定要返回的已存储字段:

POST copy-store-field/_search
{
  "stored_fields": ["full_text"]
}

动态映射

Elasticsearch具有动态映射功能,当索引中出现未事先定义的字段时,会自动为其创建映射。这在处理未知结构或快速迭代的数据时非常有用。例如,尝试向一个新索引date-test中添加一条包含create_date字段的文档:

PUT date-test/_doc/1
{
  "create_date": "2015/09/02 00:00:00"
}

查询映射信息,可以看到Elasticsearch已自动为create_date字段创建了映射:

GET date-test/_mapping

若需要自定义动态映射的行为,如指定日期格式,可以在创建索引时设置dynamic_date_formats属性:

PUT date-test2
{
  "mappings": {
    "dynamic_date_formats": ["yyyy-MM-dd HH:mm:ss","yyyy-MM-dd"]
  }
}

总结起来,Elasticsearch的映射机制为索引结构提供了强大的灵活性和控制力。通过合理设计映射,可以优化数据存储、提升搜索性能,并确保数据的一致性和完整性。

相关实践学习
使用阿里云Elasticsearch体验信息检索加速
通过创建登录阿里云Elasticsearch集群,使用DataWorks将MySQL数据同步至Elasticsearch,体验多条件检索效果,简单展示数据同步和信息检索加速的过程和操作。
ElasticSearch 入门精讲
ElasticSearch是一个开源的、基于Lucene的、分布式、高扩展、高实时的搜索与数据分析引擎。根据DB-Engines的排名显示,Elasticsearch是最受欢迎的企业搜索引擎,其次是Apache Solr(也是基于Lucene)。 ElasticSearch的实现原理主要分为以下几个步骤: 用户将数据提交到Elastic Search 数据库中 通过分词控制器去将对应的语句分词,将其权重和分词结果一并存入数据 当用户搜索数据时候,再根据权重将结果排名、打分 将返回结果呈现给用户 Elasticsearch可以用于搜索各种文档。它提供可扩展的搜索,具有接近实时的搜索,并支持多租户。
相关文章
|
3月前
|
自然语言处理 大数据 应用服务中间件
大数据-172 Elasticsearch 索引操作 与 IK 分词器 自定义停用词 Nginx 服务
大数据-172 Elasticsearch 索引操作 与 IK 分词器 自定义停用词 Nginx 服务
87 5
|
3月前
|
存储 分布式计算 大数据
大数据-169 Elasticsearch 索引使用 与 架构概念 增删改查
大数据-169 Elasticsearch 索引使用 与 架构概念 增删改查
79 3
|
5月前
|
存储 API 数据库
检索服务elasticsearch索引(Index)
【8月更文挑战第23天】
79 6
|
5月前
|
存储 监控 负载均衡
检索服务elasticsearch分布式结构
【8月更文挑战第22天】
58 3
|
2月前
|
存储 缓存 监控
优化Elasticsearch 索引设计
优化Elasticsearch 索引设计
29 5
|
2月前
|
存储 JSON 关系型数据库
Elasticsearch 索引
【11月更文挑战第3天】
44 4
|
6月前
|
自然语言处理 关系型数据库 数据库
ElasticSearch 映射类型及数据类型区分
ElasticSearch 映射类型及数据类型区分
61 0
|
2月前
|
测试技术 API 开发工具
ElasticSearch7.6.x 模板及滚动索引创建及注意事项
ElasticSearch7.6.x 模板及滚动索引创建及注意事项
53 8
|
4月前
|
JSON 自然语言处理 数据库
ElasticSearch基础1——索引和文档。Kibana,RestClient操作索引和文档+黑马旅游ES库导入
概念、ik分词器、倒排索引、索引和文档的增删改查、RestClient对索引和文档的增删改查
ElasticSearch基础1——索引和文档。Kibana,RestClient操作索引和文档+黑马旅游ES库导入
|
4月前
|
存储 搜索推荐 数据建模
Elasticsearch 的数据建模与索引设计
【9月更文第3天】Elasticsearch 是一个基于 Lucene 的搜索引擎,广泛应用于全文检索、数据分析等领域。为了确保 Elasticsearch 的高效运行,合理的数据建模和索引设计至关重要。本文将探讨如何为不同的应用场景设计高效的索引结构,并分享一些数据建模的最佳实践。
188 2