人工智能之原理概述

简介: 人工智能(Artificial Intelligence),英文缩写为AI。它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。人工智能是计算机科学的一个分支,它企图了解智能的实质,并生产出一种新的能以人类智能相似的方式做出反应的智能机器,该领域的研究包括机器人、语言识别、图像识别、自然语言处理和专家系统等

人工智能(Artificial Intelligence),英文缩写为AI。它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。

人工智能是计算机科学的一个分支,它企图了解智能的实质,并生产出一种新的能以人类智能相似的方式做出反应的智能机器,该领域的研究包括机器人、语言识别、图像识别、自然语言处理和专家系统等

一、人工智能历史

虽然 AI 出现在大众视野中的时间并不长,但相关理论在上个世纪就已经有了雏形。

1940年,控制论中阐述探索调节系统的跨学科研究,它用于研究控制系统的结构、局限和发展。这是关于人、动物和机器如何相互控制和通信的科学研究。

1943年,美国神经科学家麦卡洛克、皮茨提出神经网络,并制作了一个模型叫 M-P 模型。

1950年,随着计算机科学、神经科学、数学的发展,图灵发表了一个跨时代的论文,提出了一个很有哲理的The Imitation Game也称为图灵测试。大意是指:人与机器聊天的过程中,如果无法发现对方是机器,则称为通过图灵测试。

1956年,马文明.斯基、约翰.麦卡锡、克劳德.香农(信息论奠基者)举行了一个会议:达特茅斯会议。其主要议题就是人们到底能否像人一样思考,并且出现了 AI 这个词。

1966年,MIT 的聊天机器人Eliza, 之前的系统都是基于 PatternMatching 模式匹配,基于规则的。

1997年,IBM 深蓝战胜了象棋冠军。多伦多大学的辛顿将反向传播算法BP引入到人工智能当中;纽约大学的杨立昆,著名贡献就是卷积神经网络CNN;蒙特利尔大学的本吉奥(神经概率语言模型、生成对抗性网络)。

2010年,机器学习里面的一个领域 Artificial Neural Networks 人工人神经网络开始闪光。

二、机器学习

机器学习的常见任务就是通过训练算法,自动发现数据背后的规律,不断改进模型,然后做出预测。机器学习中的算法众多,其中最经典的算法当属:梯度下降算法。它可以帮我们去处理分类、回归的问题。通过y=wx+b这种式子线性拟合,让结果趋近于正确值。

2.1 预测函数

假设我们有一组因果关系的样本点,分别代表一组有因果关系的变量。比如是房子的价格和面积,人的身高和步幅等等。常识告诉我们,他们的分布是正比例的。首先,梯度下降算法会确定一个小目标–预测函数,也就是一条过原点的直线 y = wx。我们的任务就是设计一个算法,让这个机器可以拟合这些数据,帮助我们算出直线的参数w。

一个简单的办法就是随机选一条过原点的直线,然后计算所有样本点和它的偏离程度。再根据误差大小来调整直线斜率 w

通过调整参数,让损失函数变的越小,说明预测的越精准。在这个例子中 y = wx 就是所谓的预测函数。

2.2 代价函数

找误差的这个过程就是计算代价函数。通过量化数据的偏离程度,也就是误差,最常见的就是均方误差(误差平方和的平均值)。比如误差值是 e ,因为找误差的系数是平方和的式子,所以 e 的函数图像如下图右侧所示。我们会发现当e的函数在最低点的时候,左侧图中的误差就会越小,也就是拟合的越精准。

2.3 梯度计算

机器学习的目标是拟合出最接近训练数据分布的直线,也就是找到使得误差代价最小的参数,对应在代价函数上就是最低点。这个寻找最低点的过程就称为梯度下降。

利用梯度下降算法训练这个参数,非常类似于人的学习和认知过程。皮亚杰的认知发展理论,所谓的同化和顺应,吃一堑长一智,这就和机器学习的过程是一模一样的。

三、深度学习

关于 AI 算法是否要使用类人脑的运作方式去实现,早期是存在较大争议的。并且在深度学习出来之前,大部分的计算机科学家都投身到了,类似于模式匹配的研究方向。现在看来那种方法,当然是很难让机器变的和人一样智能。但我们不能以现在的眼光来看待当时的人们,当时关于数据和算力都很匮乏,所以自然就有一套理论反驳采用类人脑的思路去实现。

计算机的运行原理怎么可能和人脑一样呢?我们还是要采用传统算法去解决问题。这也间接导致了 AI 在当时一直停滞不前的局面。对于当年研究这个方向的博士来说,现实是残酷的。所以才有那句话:人的努力固然重要,但也要看方向。

1943 年神经科学家探究了人脑的运行原理,人的大脑是超过 100 亿个神经元通过网状链接,来判断和传递信息。

每一个神经元都是一个多输入,单输出。可以通过多个神经元得到信号,得到信号进行综合处理,如果有必要则会向下游输出信号。这个输出只有两个信号,要么就是0要么就是1,和计算机非常类似。所以他们就提出一个模型叫M-P模型。

人工神经网络是一种模仿动物神经网络行为特征,进行分布式并行信息处理的算法数学模型。深度学习是一种以人工神经网络为架构,对资料进行表征学习的算法。

相关文章
|
29天前
|
机器学习/深度学习 算法 数据建模
计算机前沿技术-人工智能算法-生成对抗网络-算法原理及应用实践
计算机前沿技术-人工智能算法-生成对抗网络-算法原理及应用实践
25 0
|
29天前
|
机器学习/深度学习 人工智能 算法
人工智能-大语言模型-微调技术-LoRA及背后原理简介
人工智能-大语言模型-微调技术-LoRA及背后原理简介
37 0
|
1月前
|
机器学习/深度学习 人工智能 自然语言处理
探索人工智能:从原理到实践
【10月更文挑战第6天】在这篇文章中,我们将深入探讨人工智能的基本原理,并展示如何将这些理论应用到实际编程中。无论你是AI新手还是有经验的开发者,这篇文章都将为你提供有价值的信息和启示。我们将从基础概念开始,逐步深入到复杂的编程示例,最后总结出一些关于人工智能未来发展的思考。让我们一起踏上这段探索之旅吧!
|
3月前
|
机器学习/深度学习 人工智能 自然语言处理
【人工智能】深度解读 ChatGPT基本原理
ChatGPT是OpenAI开发的一种基于人工智能技术的自然语言处理工具,它代表了自然语言处理(NLP)技术的前沿进展。ChatGPT的基本原理建立在一系列先进技术和方法之上,主要包括GPT(Generative Pre-trained Transformer)模型架构、预训练与微调技术、以及可能采用的RLHF(Reinforcement Learning from Human Feedback)等高级训练策略。下面将详细解读ChatGPT的基本原理和关键技术:
85 1
|
3月前
|
人工智能 自然语言处理 算法
【人工智能】TF-IDF算法概述
TF-IDF算法,全称Term Frequency-Inverse Document Frequency(词频-逆文档频率),是一种在信息检索和文本挖掘领域广泛应用的加权技术。它通过评估一个词语在文档中的重要程度,来挖掘文章中的关键词,进而用于文本分析、搜索引擎优化等场景。其核心思想是:如果某个词或短语在一篇文章中出现的频率高(TF高),且在其他文章中很少出现(IDF也高),则认为这个词或短语具有很好的类别区分能力,适合用来代表这篇文章的内容。 具体而言,TF-IDF由两部分组成,即词频(TF)和逆文档频率(IDF)。词频(TF)指的是某一个给定的词在该文件中出现的频率。这个数值通常会被归一化
45 3
|
3月前
|
机器学习/深度学习 人工智能 并行计算
【人工智能】CPU、GPU与TPU:人工智能领域的核心处理器概述
在人工智能和计算技术的快速发展中,CPU(中央处理器)、GPU(图形处理器)和TPU(张量处理器)作为核心处理器,各自扮演着不可或缺的角色。它们不仅在性能上各有千秋,还在不同的应用场景中发挥着重要作用
201 2
|
3月前
|
机器学习/深度学习 人工智能 算法
【人工智能】传统语音识别算法概述,应用场景,项目实践及案例分析,附带代码示例
传统语音识别算法是将语音信号转化为文本形式的技术,它主要基于模式识别理论和数学统计学方法。以下是传统语音识别算法的基本概述
76 2
|
3月前
|
机器学习/深度学习 人工智能 搜索推荐
【人工智能】人工智能在医疗健康中的应用以及实际案例和进展概述
人工智能(Artificial Intelligence, AI)在医疗健康领域的应用日益广泛,为医疗服务的提升和健康管理带来了革命性的变化。以下是人工智能在医疗健康中的主要应用
810 1
|
3月前
|
机器学习/深度学习 人工智能 自然语言处理
【人工智能】常用的人工智能框架、模型、使用方法、应用场景以及代码实例的概述
人工智能(AI)领域涉及众多框架和模型,这些框架和模型为开发人员提供了强大的工具,以构建和训练各种AI应用。以下是一些常用的人工智能框架、模型、使用方法、应用场景以及代码实例的概述。
155 1
|
2月前
|
机器学习/深度学习 人工智能 算法
探索人工智能:机器学习的基本原理与Python代码实践
【9月更文挑战第6天】本文深入探讨了人工智能领域中的机器学习技术,旨在通过简明的语言和实际的编码示例,为初学者提供一条清晰的学习路径。文章不仅阐述了机器学习的基本概念、主要算法及其应用场景,还通过Python语言展示了如何实现一个简单的线性回归模型。此外,本文还讨论了机器学习面临的挑战和未来发展趋势,以期激发读者对这一前沿技术的兴趣和思考。

热门文章

最新文章