Python的GIL限制了CPython在多核下的并行计算,但通过替代解释器(如Jython, IronPython, PyPy)和多进程、异步IO可规避

简介: 【6月更文挑战第26天】Python的GIL限制了CPython在多核下的并行计算,但通过替代解释器(如Jython, IronPython, PyPy)和多进程、异步IO可规避。Numba、Cython等工具编译优化代码,未来社区可能探索更高级的并发解决方案。尽管GIL仍存在,现有策略已能有效提升并发性能。

Python 的全局解释器锁(GIL)问题尚未完全解决,因为在标准的 CPython 解释器中,为了保证线程安全和简化内存管理,GIL 仍然存在。尽管 Python 开发者社区一直在努力优化 GIL 的实现,并在某些版本中改进了 GIL 的性能表现,但从根本上来说,CPython 在多核系统上无法利用多个CPU核心同时执行独立的Python字节码这一限制依然存在。

不过,在应对 GIL 限制方面,有几种发展趋势:

  1. 替代实现:为了解决 GIL 对并行计算效率的影响,出现了不使用 GIL 的 Python 解释器实现,如 Jython、IronPython(它们运行在JVM和.NET CLR之上,不受Python GIL限制)、PyPy(它支持分代GIL以提高并发性能)以及实验性的新项目如 GraalPython 和 Pyston 等。

  2. 多进程与异步IO:Python 程序可以通过使用多进程(multiprocessing 模块)来规避 GIL,每个进程拥有自己的 Python 解释器实例和独立的 GIL,因此可以在多核 CPU 上实现真正的并行处理。此外,通过异步 I/O 库(例如 asyncio 或第三方库 Tornado、Twisted 等)可以实现高并发的 I/O 密集型应用,即使在单个进程中也能高效地进行非阻塞操作。

  3. NUMBA、Cython 等编译工具:对于高度计算密集型的任务,可以使用 Numba 这样的 JIT(Just-In-Time)编译器将 Python 代码转换为无需 GIL 的机器码,或者使用 Cython 编写混合 Python/C 代码来避免 GIL 的影响。

  4. 未来可能的方向:虽然目前没有官方声明表明会彻底移除 GIL,但随着计算机硬件的发展和编程模式的变化,Python 社区可能会继续探索更高级别的并发和并行解决方案,或者对 CPython 内部结构进行重大重构以适应多核处理器的充分利用。

综上所述,虽然 GIL 问题尚未彻底解决,但现有的技术和未来的发展方向已经提供了许多有效的方法来缓解其对并发性能的影响,并且在特定场景下实现了良好的并行计算能力。

相关文章
|
2月前
|
Python
【10月更文挑战第10天】「Mac上学Python 19」小学奥数篇5 - 圆和矩形的面积计算
本篇将通过 Python 和 Cangjie 双语解决简单的几何问题:计算圆的面积和矩形的面积。通过这道题,学生将掌握如何使用公式解决几何问题,并学会用编程实现数学公式。
169 60
|
19天前
|
Python
Python中的函数是**一种命名的代码块,用于执行特定任务或计算
Python中的函数是**一种命名的代码块,用于执行特定任务或计算
43 18
|
22天前
|
Python
使用Python计算字符串的SHA-256散列值
使用Python计算字符串的SHA-256散列值
24 7
|
1月前
|
并行计算 数据处理 调度
Python中的并发编程:探索多线程与多进程的奥秘####
本文深入探讨了Python中并发编程的两种主要方式——多线程与多进程,通过对比分析它们的工作原理、适用场景及性能差异,揭示了在不同应用需求下如何合理选择并发模型。文章首先简述了并发编程的基本概念,随后详细阐述了Python中多线程与多进程的实现机制,包括GIL(全局解释器锁)对多线程的影响以及多进程的独立内存空间特性。最后,通过实例演示了如何在Python项目中有效利用多线程和多进程提升程序性能。 ####
|
1月前
|
机器学习/深度学习 算法 编译器
Python程序到计算图一键转化,详解清华开源深度学习编译器MagPy
【10月更文挑战第26天】MagPy是一款由清华大学研发的开源深度学习编译器,可将Python程序一键转化为计算图,简化模型构建和优化过程。它支持多种深度学习框架,具备自动化、灵活性、优化性能好和易于扩展等特点,适用于模型构建、迁移、部署及教学研究。尽管MagPy具有诸多优势,但在算子支持、优化策略等方面仍面临挑战。
83 3
|
1月前
|
调度 iOS开发 MacOS
python多进程一文够了!!!
本文介绍了高效编程中的多任务原理及其在Python中的实现。主要内容包括多任务的概念、单核和多核CPU的多任务实现、并发与并行的区别、多任务的实现方式(多进程、多线程、协程等)。详细讲解了进程的概念、使用方法、全局变量在多个子进程中的共享问题、启动大量子进程的方法、进程间通信(队列、字典、列表共享)、生产者消费者模型的实现,以及一个实际案例——抓取斗图网站的图片。通过这些内容,读者可以深入理解多任务编程的原理和实践技巧。
82 1
|
1月前
|
监控 JavaScript 前端开发
python中的线程和进程(一文带你了解)
欢迎来到瑞雨溪的博客,这里是一位热爱JavaScript和Vue的大一学生分享技术心得的地方。如果你从我的文章中有所收获,欢迎关注我,我将持续更新更多优质内容,你的支持是我前进的动力!🎉🎉🎉
24 0
|
2月前
|
Python
Python中的多线程与多进程
本文将探讨Python中多线程和多进程的基本概念、使用场景以及实现方式。通过对比分析,我们将了解何时使用多线程或多进程更为合适,并提供一些实用的代码示例来帮助读者更好地理解这两种并发编程技术。
|
2月前
|
Python
【10月更文挑战第15天】「Mac上学Python 26」小学奥数篇12 - 图形变换与坐标计算
本篇将通过 Python 和 Cangjie 双语实现图形变换与坐标计算。这个题目帮助学生理解平面几何中的旋转、平移和对称变换,并学会用编程实现坐标变化。
69 1
|
2月前
|
机器学习/深度学习 移动开发 Python
【10月更文挑战第11天】「Mac上学Python 22」小学奥数篇8 - 排列组合计算
本篇将通过 Python 和 Cangjie 双语讲解如何计算排列与组合。这道题目旨在让学生学会使用排列组合公式解决实际问题,并加深对数学知识和编程逻辑的理解。
69 4