python多进程一文够了!!!

本文涉及的产品
实时数仓Hologres,5000CU*H 100GB 3个月
实时计算 Flink 版,5000CU*H 3个月
检索分析服务 Elasticsearch 版,2核4GB开发者规格 1个月
简介: 本文介绍了高效编程中的多任务原理及其在Python中的实现。主要内容包括多任务的概念、单核和多核CPU的多任务实现、并发与并行的区别、多任务的实现方式(多进程、多线程、协程等)。详细讲解了进程的概念、使用方法、全局变量在多个子进程中的共享问题、启动大量子进程的方法、进程间通信(队列、字典、列表共享)、生产者消费者模型的实现,以及一个实际案例——抓取斗图网站的图片。通过这些内容,读者可以深入理解多任务编程的原理和实践技巧。

[TOC]

高效编程

一、多任务原理

  • 概念

    现代操作系统比如Mac OS X,UNIX,Linux,Windows等,都是支持“多任务”的操作系统

  • 什么叫多任务?

    就是操作系统可以同时运行多个任务

  • 单核CPU实现多任务原理

    操作系统轮流让各个任务交替执行,QQ执行2us(微秒),切换到微信,在执行2us,再切换到陌陌,执行2us……。表面是看,每个任务反复执行下去,但是CPU调度执行速度太快了,导致我们感觉就像所有任务都在同时执行一样

  • 多核CPU实现多任务原理

    ​ 真正的秉性执行多任务只能在多核CPU上实现,但是由于任务数量远远多于CPU的核心数量,所以,操作系统也会自动把很多任务轮流调度到每个核心上执行

  • 并发与并行

    • 并发

      CPU调度执行速度太快了,看上去一起执行,任务数多于CPU核心数

    • 并行

      真正一起执行,任务数小于等于CPU核心数

    • 并发是逻辑上的同时发生,并行更多是侧重于物理上的同时发生。

  • 实现多任务的方式

    • 多进程模式

      启动多个进程,每个进程虽然只有一个线程,但是多个进程可以一起执行多个任务

    • 多线程模式

      启动一个进程,在一个进程的内部启动多个线程,这样多个线程也可以一起执行多个任务

    • 多进程+多线程

      启动多个进程,每个进程再启动多个线程

    • 协程

    • 多进程+协程

二、进程

1、概念

  • 什么是进程?

    是计算机中的程序关于某数据集合上的一次运行活动,是系统进行资源分配和调度的基本单位,是操作系统结构的基础。

  • 对于操作系统

    一个任务就是一个进程。比方说打开浏览器就是启动一个浏览器的进程,在打开一个记事本就启动一个记事本进程,如果打开两个记事本就启动两个记事本进程

2、使用进程

  • 单进程现象

    需要等待代码执行完后再执行下一段代码

    import time
    
    def run1():
        while 1:
            print("lucky is a good man")
            time.sleep(1)
    
    def run2():
        while 1:
            print("lucky is a nice man")
            time.sleep(1)
    
    if __name__ == "__main__":
        run1()
        # 不会执行run2()函数,只有上面的run1()结束才能执行run2()
        run2()
    
  • 启动进程实现多任务

    • multiprocessing模块

      跨平台的多进程模块,提供了一个Process类用来示例化一个进程对象

    • Process类

      作用:创建进程(子进程)

    • __name__

      这是 Windows 上多进程的实现问题。在 Windows 上,子进程会自动 import 启动它的这个文件,而在 import 的时候是会执行这些语句的。如果你这么写的话就会无限递归创建子进程报错。所以必须把创建子进程的部分用那个 if 判断保护起来,import 的时候 __name__ 不是 __main__ ,就不会递归运行了。

      | 参数 | 说明 |
      | ------ | -------------------------------- |
      | target | 指定进程执行的任务 |
      | args | 给进程函数传递的参数,是一个元组 |

      注意:此时进程被创建,但是不会启动进程执行

    • 启动进程实现多任务

      from multiprocessing import Process

      创建子进程

      P = Process(target=run,args=("nice",),name='当前进程名称')

      • target指定 子进程运行的函数

      • args 指定传递的参数 , 是元组类型

      • 启动进程:Process对象.start()

      获取进程信息

      • os.getpid() 获取当前进程id号
      • os.getppid() 获取当前进程的父进程id号
      • multiprocessing.current_process().name 获取当前进程名称

      父子进程的先后顺序

      • 默认 父进程的结束不能影响子进程 让父进程等待子进程结束再执行父进程

      • p.join() 阻塞当前进程,直到调用join方法的那个进程执行完,再继续执行当前进程。

      • 全局变量在过个进程中不能共享

        注意: 在子线程中修改全局变量时对父进程中的全局变量没有影响

    • 示例代码

      import time
      
      from multiprocessing import Process
      
      def run1(name):
          while 1:
              print("%s is a good man"%name)
              time.sleep(1)
      
      def run2():
          while 1:
              print("lucky is a nice man")
              time.sleep(1)
      
      if __name__ == "__main__":
          # 程序启动时的进程称为主进程(父进程)
      
          # 创建进程并启动
          p = Process(target=run1, args=("lucky",))
          p.start()
      
          # 主进程执行run2()函数
          run2()
      
  • 主进程负责调度

    主进程主要做的是调度相关的工作,一般不负责具体业务逻辑

    import time
    from multiprocessing import Process
    
    def run1():
        for i in range(7):
            print("lucky is a good man")
            time.sleep(1)
    
    def run2(name, word):
        for i in range(5):
            print("%s is a %s man"%(name, word))
            time.sleep(1)
    
    if __name__ == "__main__":
        t1 = time.time()
    
        # 创建两个进程分别执行run1、run2
        p1 = Process(target=run1)
        p2 = Process(target=run2, args=("lucky", "cool"))
    
        # 启动两个进程
        p1.start()
        p2.start()
    
        # 查看耗时
        t2 = time.time()
        print("耗时:%.2f"%(t2-t1))
    
  • 父子进程的先后顺序

    主进程的结束不能影响子进程,所以可以等待子进程的结束再结束主进程,等待子进程结束,才能继续运行主进程

    p.join() 阻塞当前进程,直到调用join方法的那个进程执行完,再继续执行当前进程。

    import time
    from multiprocessing import Process
    
    def run1():
        for i in range(7):
            print("lucky is a good man")
            time.sleep(1)
    
    def run2(name, word):
        for i in range(5):
            print("%s is a %s man"%(name, word))
            time.sleep(1)
    
    if __name__ == "__main__":
        t1 = time.time()
    
        p1 = Process(target=run1)
        p2 = Process(target=run2, args=("lucky", "cool"))
    
        p1.start()
        p2.start()
    
        # 主进程的结束不能影响子进程,所以可以等待子进程的结束再结束主进程
        # 等待子进程结束,才能继续运行主进程
        p1.join()
        p2.join()
    
        t2 = time.time()
        print("耗时:%.2f"%(t2-t1))
    

3、全局变量在多个子进程中不能共享

原因:

​ 在创建子进程时对全局变量做了一个备份,父进程中num变量与子线程中的num不是一个变量

from multiprocessing import Process
#全局变量在进程中 不能共享
num = 10
def run():
    print("我是子进程的开始")
    global num
    num+=1
    print(num)
    print("我是子进程的结束")
if __name__=="__main__":
    p = Process(target=run)
    p.start()
    p.join()

    print(num)

尝试列表是否能共享

from multiprocessing import Process
#全局变量在进程中 不能共享
mylist = []
def run():
    print("我是子进程的开始")
    global mylist
    mylist.append(1)
    mylist.append(2)
    mylist.append(3)
    print("我是子进程的结束")

if __name__=="__main__":
    p = Process(target=run)
    p.start()
    p.join()

    print(mylist)

4、启动大量子进程

  • 获取CPU核心数

    print('CPU number:' + str(multiprocessing.cpu_count()))

  • 导入

    from multiprocesssing import Pool

  • 开启并发数

    pp = Pool([参数]) #开启并发数 默认是你的核心数

  • 创建子进程,并放入进程池管理

    apply_async为非阻塞模式(并发执行)

    pp.apply_async(run,args=(i,)) #args参数 可以为元组 或者是列表[]

  • 关闭进程池

    pp.close()关闭进程池

  • join()

    在调用join之前必须先调用close,调用close之后就不能再继续添加新的进程了

    pp.join()

    进程池对象调用join,会等待进程池中所有的子进程结束完毕再去执行父进程

  • 实例

    # Pool类:进程池类
    from multiprocessing import Pool
    import time
    import random
    import multiprocessing
    
    def run(index):
        print('CPU number:' + str(multiprocessing.cpu_count()))
        print("子进程 %d 启动"%(index))
        t1 = time.time()
        time.sleep(random.random()* 5+2)
        t2 = time.time()
        print("子进程 %d 结束,耗时:%.2f" % (index, t2-t1))
    
    if __name__ == "__main__":
        print("启动主进程……")
    
        # 创建进程池对象
        # 由于pool的默认值为CPU的核心数,假设有4核心,至少需要5个子进程才能看到效果
        # Pool()中的值表示可以同时执行进程的数量
        pool = Pool(2)
        for i in range(1, 7):
            # 创建子进程,并将子进程放到进程池中统一管理
            pool.apply_async(run, args=(i,))
    
        # 等待子进程结束
        # 关闭进程池:在关闭后就不能再向进程池中添加进程了
        # 进程池对象在调用join之前必须先关闭进程池
        pool.close()
        #pool对象调用join,主进程会等待进程池中的所有子进程结束才会继续执行主进程
        pool.join()
    
        print("结束主进程……")
    

    get方法:获取进程的返回值

    from multiprocessing import Lock, Pool
    import time
    
    def function(index):
        print('Start process: ', index)
        time.sleep(2)
        print('End process', index)
        return index
    

if name == 'main':
pool = Pool(processes=3)
for i in range(4):
result = pool.apply_async(function, (i,))
print(result.get()) #获取每个 子进程的返回值
print("Started processes")
pool.close()
pool.join()
print("Subprocess done.")

  注意:这样来获取每个进程的返回值 那么就会变成单进程

### 5、map方法

+ 概述

  如果你现在有一堆数据要处理,每一项都需要经过一个方法来处理,那么map非常适合

  比如现在你有一个数组,包含了所有的URL,而现在已经有了一个方法用来抓取每个URL内容并解析,那么可以直接在map的第一个参数传入方法名,第二个参数传入URL数组。

+ 概述

  ```python
  from multiprocessing import Pool
  import requests
  from requests.exceptions import ConnectionError

  def scrape(url):
      try:
          print(requests.get(url))
      except ConnectionError:
          print('Error Occured ', url)
      finally:
          print('URL', url, ' Scraped')


  if __name__ == '__main__':
      pool = Pool(processes=3)
      urls = [
          'https://www.baidu.com',
          'http://www.meituan.com/',
          'http://blog.csdn.net/',
          'http://xxxyxxx.net'
      ]
      pool.map(scrape, urls)

在这里初始化一个Pool,指定进程数为3,如果不指定,那么会自动根据CPU内核来分配进程数。

然后有一个链接列表,map函数可以遍历每个URL,然后对其分别执行scrape方法。

6、单进程与多进程复制文件对比

  • 单进程复制文件

    import time
    
    def copy_file(path, toPath):
        with open(path, "rb") as fp1:
            with open(toPath, "wb") as fp2:
                while 1:
                    info = fp1.read(1024)
                    if not info:
                        break
                    else:
                        fp2.write(info)
                        fp2.flush()
    
    if __name__ == "__main__":
        t1 = time.time()
    
        for i in range(1, 5):
            path = r"/Users/lucky/Desktop/file/%d.mp4"%i
            toPath = r"/Users/lucky/Desktop/file2/%d.mp4"%i
            copy_file(path, toPath)
    
        t2 = time.time()
        print("单进程耗时:%.2f"%(t2-t1))
    
  • 多进程复制文件

    import time
    from multiprocessing import Pool
    import os
    
    def copy_file(path, toPath):
        with open(path, "rb") as fp1:
            with open(toPath, "wb") as fp2:
                while 1:
                    info = fp1.read(1024)
                    if not info:
                        break
                    else:
                        fp2.write(info)
                        fp2.flush()
    
    if __name__ == "__main__":
        t1 = time.time()
        path = r"/Users/xialigang/Desktop/视频"
        dstPath = r"/Users/xialigang/Desktop/1视频"
        fileList = os.listdir(path)
        pool = Pool()
    
        for i in fileList:
            newPath1 = os.path.join(path, i)
            newPath2 = os.path.join(dstPath, i)
            pool.apply_async(copy_file, args=(newPath1, newPath2))
    
        pool.close()
        pool.join()
    
        t2 = time.time()
        print("耗时:%.2f"%(t2-t1))
    

7、进程间通信

  • 队列共享

    • 导入

      from multiprocessing import Queue

    • 使用

      que = Queue() #创建队列

      que.put(数据) #压入数据

      que.get() #获取数据

    • 队列常用函数

      Queue.empty() 如果队列为空,返回True, 反之False

      Queue.full() 如果队列满了,返回True,反之False

      Queue.get([block[, timeout]]) 获取队列,timeout等待时间

      Queue.get_nowait() 相当Queue.get(False)

      Queue.put(item) 阻塞式写入队列,timeout等待时间

      Queue.put_nowait(item) 相当Queue.put(item, False)

    • 特点:先进先出

    • 注意:

      get方法有两个参数,blocked和timeout,意思为阻塞和超时时间。默认blocked是true,即阻塞式。

      当一个队列为空的时候如果再用get取则会阻塞,所以这时候就需要吧blocked设置为false,即非阻塞式,实际上它就会调用get_nowait()方法,此时还需要设置一个超时时间,在这么长的时间内还没有取到队列元素,那就抛出Queue.Empty异常。

      当一个队列为满的时候如果再用put放则会阻塞,所以这时候就需要吧blocked设置为false,即非阻塞式,实际上它就会调用put_nowait()方法,此时还需要设置一个超时时间,在这么长的时间内还没有放进去元素,那就抛出Queue.Full异常。

      另外队列中常用的方法

    • 队列的大小

      Queue.qsize() 返回队列的大小 ,不过在 Mac OS 上没法运行。

    实例

    import multiprocessing
    queque = multiprocessing.Queue() #创建 队列
    #如果在子进程 和主进程 之间 都压入了数据 那么在主进程 和 子进程 获取的就是 对方的数据
    def fun(myque):
        # print(id(myque)) #获取当前的队列的存储地址  依然是拷贝了一份
        myque.put(['a','b','c']) #在子进程里面压入数据
        # print("子进程获取",myque.get())#获取队列里面的值
    
    if __name__=='__main__':
        # print(id(queque))
        queque.put([1,2,3,4,5]) #将列表压入队列  如果主进程也压入了数据 那么在主进程取的就是在主进程压入的数据 而不是子进程的
        p = multiprocessing.Process(target=fun,args=(queque,))
        p.start()
        p.join()
        print("主进程获取",queque.get())#在主进程进行获取
        print("主进程获取",queque.get())#在主进程进行获取
        # print("主进程获取",queque.get(block=True, timeout=1))#在主进程进行获取
    
  • 字典共享

    • 导入

      import multiprocess

    • 概述

      Manager是一个进程间高级通信的方法 支持Python的字典和列表的数据类型

    • 创建字典

      myDict = multiprocess.Manager().dict()

    实例

    import multiprocessing
    

def fun(mydict):

  # print(mylist)
  mydict['x'] = 'x'
  mydict['y'] = 'y'
  mydict['z'] = 'z'

if name=='main':

  # Manager是一种较为高级的多进程通信方式,它能支持Python支持的的任何数据结构。
  mydict = multiprocessing.Manager().dict()
  p = multiprocessing.Process(target=fun,args=(mydict,))
  p.start()
  p.join()
  print(mydict)
- 列表共享

  + 导入

    import multiprocess

  + 创建列表

    myDict = multiprocess.Manager().list()

  实例(字典与列表共享)

  ```python
  import multiprocessing


  def fun(List):
      # print(mylist)
      List.append('x')
      List.append('y')
      List.append('z')


  if __name__=='__main__':
      # Manager是一种较为高级的多进程通信方式,它能支持Python支持的的任何数据结构。
      List = multiprocessing.Manager().list()
      p = multiprocessing.Process(target=fun,args=(List,))
      p.start()
      p.join()
      print(List)
  • 注意

    进程名.terminate() 强行终止子进程

  • deamon

    在这里介绍一个属性,叫做deamon。每个进程程都可以单独设置它的属性,如果设置为True,当父进程结束后,子进程会自动被终止。

    进程.daemon = True

    设置在start()方法之前

    import multiprocessing
    import time
    def fun():
        time.sleep(100)
    if __name__=='__main__':
        p = multiprocessing.Process(target=fun)
        p.daemon = True
        p.start()
        print('over')
    
  • 进程名.terminate() 强行终止子进程

    import multiprocessing
    import time
    def fun():
        time.sleep(100)
    if __name__=='__main__':
        p = multiprocessing.Process(target=fun)
        p.start()
        p.terminate()
        p.join()
        print('over')
    

8、进程实现生产者消费者

生产者消费者模型描述:

生产者是指生产数据的任务,消费者是指消费数据的任务。

当生产者的生产能力远大于消费者的消费能力,生产者就需要等消费者消费完才能继续生产新的数据,同理,如果消费者的消费能力远大于生产者的生产能力,消费者就需要等生产者生产完数据才能继续消费,这种等待会造成效率的低下,为了解决这种问题就引入了生产者消费者模型。

生产者/消费者问题可以描述为:两个或者更多的进程(线程)共享同一个缓冲区,其中一个或多个进程(线程)作为“生产者”会不断地向缓冲区中添加数据,另一个或者多个进程(线程)作为“消费者”从缓冲区中取走数据。

  • 代码

    from multiprocessing import Process
    from multiprocessing import Queue
    import time
    
    def product(q):
        print("启动生产子进程……")
        for data in ["good", "nice", "cool", "handsome"]:
            time.sleep(2)
            print("生产出:%s"%data)
            # 将生产的数据写入队列
            q.put(data)
        print("结束生产子进程……")
    
    def t(q):
        print("启动消费子进程……")
        while 1:
            print("等待生产者生产数据")
            # 获取生产者生产的数据,如果队列中没有数据会阻塞,等待队列中有数据再获取
            value = q.get()
            print("消费者消费了%s数据"%(value))
        print("结束消费子进程……")
    
    if __name__ == "__main__":
        q = Queue()
    
        p1 = Process(target=product, args=(q,))
        p2 = Process(target=customer, args=(q,))
    
        p1.start()
        p2.start()
    
        p1.join()
        # p2子进程里面是死循环,无法等待它的结束
        # p2.join()
        # 强制结束子进程
        p2.terminate()
    
        print("主进程结束")
    

9、案例(抓取斗图)

from multiprocessing import Process,Queue
from concurrent.futures import ThreadPoolExecutor
from lxml import etree
import time
import requests

headers = {
   
    "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/99.0.4844.84 Safari/537.36"
}

def get_img_src(url, q):
    """
    进程1: 负责提取页面中所有的img的下载地址
    将图片的下载地址通过队列. 传输给另一个进程进行下载
    """

    resp = requests.get(url, headers=headers)
    tree = etree.HTML(resp.text)
    srcs = tree.xpath("//li[@class='list-group-item']//img[@referrerpolicy='no-referrer']/@data-original")
    for src in srcs:
        q.put(src.strip())
    resp.close()



def download_img(q):
    """
        进程2: 将图片的下载地址从队列中提取出来. 进行下载.
   """
    with ThreadPoolExecutor(20) as t:
        while 1:
            try:
                s = q.get(timeout=20)
                t.submit(donwload_one, s)
            except Exception as e:
                print(e)
                break

def donwload_one(s):
    # 单纯的下载功能
    resp = requests.get(s, headers=headers)
    file_name = s.split("/")[-1]
    # 请提前创建好img文件夹
    with open(f"img/{file_name}", mode="wb") as f:
        f.write(resp.content)
    print("一张图片下载完毕", file_name)
    resp.close()

if __name__ == '__main__':
    t1 = time.time()
    q = Queue()  # 两个进程必须使用同一个队列. 否则数据传输不了
    p_list = []
    for i in range(1, 11):
        url = f"https://www.pkdoutu.com/photo/list/?page={i}"
        p = Process(target=get_img_src, args=(url, q))
        p_list.append(p)
    for p in p_list:
        p.start()
    p2 = Process(target=download_img, args=(q,))
    p2.start()
    for p in p_list:
        p.join()
    p2.join()
    print((time.time()-t1)/60)
# 0.49572664896647134
目录
相关文章
|
3天前
|
弹性计算 双11 开发者
阿里云ECS“99套餐”再升级!双11一站式满足全年算力需求
11月1日,阿里云弹性计算ECS双11活动全面开启,在延续火爆的云服务器“99套餐”外,CPU、GPU及容器等算力产品均迎来了全年最低价。同时,阿里云全新推出简捷版控制台ECS Lite及专属宝塔面板,大幅降低企业和开发者使用ECS云服务器门槛。
|
20天前
|
存储 弹性计算 人工智能
阿里云弹性计算_通用计算专场精华概览 | 2024云栖大会回顾
阿里云弹性计算产品线、存储产品线产品负责人Alex Chen(陈起鲲)及团队内多位专家,和中国电子技术标准化研究院云计算标准负责人陈行、北京望石智慧科技有限公司首席架构师王晓满两位嘉宾,一同带来了题为《通用计算新品发布与行业实践》的专场Session。本次专场内容包括阿里云弹性计算全新发布的产品家族、阿里云第 9 代 ECS 企业级实例、CIPU 2.0技术解读、E-HPC+超算融合、倚天云原生算力解析等内容,并发布了国内首个云超算国家标准。
阿里云弹性计算_通用计算专场精华概览 | 2024云栖大会回顾
|
2天前
|
人工智能 弹性计算 文字识别
基于阿里云文档智能和RAG快速构建企业"第二大脑"
在数字化转型的背景下,企业面临海量文档管理的挑战。传统的文档管理方式效率低下,难以满足业务需求。阿里云推出的文档智能(Document Mind)与检索增强生成(RAG)技术,通过自动化解析和智能检索,极大地提升了文档管理的效率和信息利用的价值。本文介绍了如何利用阿里云的解决方案,快速构建企业专属的“第二大脑”,助力企业在竞争中占据优势。
|
5天前
|
存储 安全 Oracle
【灵码助力安全3】——利用通义灵码辅助智能合约漏洞检测的尝试
本文探讨了智能合约的安全性问题,特别是重入攻击、预言机操纵、整数溢出和时间戳依赖性等常见漏洞。文章通过实例详细分析了重入攻击的原理和防范措施,展示了如何利用通义灵码辅助检测和修复这些漏洞。此外,文章还介绍了最新的研究成果,如GPTScan工具,该工具通过结合大模型和静态分析技术,提高了智能合约漏洞检测的准确性和效率。最后,文章总结了灵码在智能合约安全领域的应用前景,指出尽管存在一些局限性,但其在检测和预防逻辑漏洞方面仍展现出巨大潜力。
|
7天前
|
负载均衡 算法 网络安全
阿里云WoSign SSL证书申请指南_沃通SSL技术文档
阿里云平台WoSign品牌SSL证书是由阿里云合作伙伴沃通CA提供,上线阿里云平台以来,成为阿里云平台热销的国产品牌证书产品,用户在阿里云平台https://www.aliyun.com/product/cas 可直接下单购买WoSign SSL证书,快捷部署到阿里云产品中。
1847 6
阿里云WoSign SSL证书申请指南_沃通SSL技术文档
|
10天前
|
Web App开发 算法 安全
什么是阿里云WoSign SSL证书?_沃通SSL技术文档
WoSign品牌SSL证书由阿里云平台SSL证书合作伙伴沃通CA提供,上线阿里云平台以来,成为阿里云平台热销的国产品牌证书产品。
1789 2
|
19天前
|
编解码 Java 程序员
写代码还有专业的编程显示器?
写代码已经十个年头了, 一直都是习惯直接用一台Mac电脑写代码 偶尔接一个显示器, 但是可能因为公司配的显示器不怎么样, 还要接转接头 搞得桌面杂乱无章,分辨率也低,感觉屏幕还是Mac自带的看着舒服
|
26天前
|
存储 人工智能 缓存
AI助理直击要害,从繁复中提炼精华——使用CDN加速访问OSS存储的图片
本案例介绍如何利用AI助理快速实现OSS存储的图片接入CDN,以加速图片访问。通过AI助理提炼关键操作步骤,避免在复杂文档中寻找解决方案。主要步骤包括开通CDN、添加加速域名、配置CNAME等。实测显示,接入CDN后图片加载时间显著缩短,验证了加速效果。此方法大幅提高了操作效率,降低了学习成本。
5385 15
|
13天前
|
人工智能 关系型数据库 Serverless
1024,致开发者们——希望和你一起用技术人独有的方式,庆祝你的主场
阿里云开发者社区推出“1024·云上见”程序员节专题活动,包括云上实操、开发者测评和征文三个分会场,提供14个实操活动、3个解决方案、3 个产品方案的测评及征文比赛,旨在帮助开发者提升技能、分享经验,共筑技术梦想。
1130 152
|
21天前
|
存储 缓存 关系型数据库
MySQL事务日志-Redo Log工作原理分析
事务的隔离性和原子性分别通过锁和事务日志实现,而持久性则依赖于事务日志中的`Redo Log`。在MySQL中,`Redo Log`确保已提交事务的数据能持久保存,即使系统崩溃也能通过重做日志恢复数据。其工作原理是记录数据在内存中的更改,待事务提交时写入磁盘。此外,`Redo Log`采用简单的物理日志格式和高效的顺序IO,确保快速提交。通过不同的落盘策略,可在性能和安全性之间做出权衡。
1585 14