python多进程一文够了!!!

本文涉及的产品
检索分析服务 Elasticsearch 版,2核4GB开发者规格 1个月
智能开放搜索 OpenSearch行业算法版,1GB 20LCU 1个月
实时数仓Hologres,5000CU*H 100GB 3个月
简介: 本文介绍了高效编程中的多任务原理及其在Python中的实现。主要内容包括多任务的概念、单核和多核CPU的多任务实现、并发与并行的区别、多任务的实现方式(多进程、多线程、协程等)。详细讲解了进程的概念、使用方法、全局变量在多个子进程中的共享问题、启动大量子进程的方法、进程间通信(队列、字典、列表共享)、生产者消费者模型的实现,以及一个实际案例——抓取斗图网站的图片。通过这些内容,读者可以深入理解多任务编程的原理和实践技巧。

[TOC]

高效编程

一、多任务原理

  • 概念

    现代操作系统比如Mac OS X,UNIX,Linux,Windows等,都是支持“多任务”的操作系统

  • 什么叫多任务?

    就是操作系统可以同时运行多个任务

  • 单核CPU实现多任务原理

    操作系统轮流让各个任务交替执行,QQ执行2us(微秒),切换到微信,在执行2us,再切换到陌陌,执行2us……。表面是看,每个任务反复执行下去,但是CPU调度执行速度太快了,导致我们感觉就像所有任务都在同时执行一样

  • 多核CPU实现多任务原理

    ​ 真正的秉性执行多任务只能在多核CPU上实现,但是由于任务数量远远多于CPU的核心数量,所以,操作系统也会自动把很多任务轮流调度到每个核心上执行

  • 并发与并行

    • 并发

      CPU调度执行速度太快了,看上去一起执行,任务数多于CPU核心数

    • 并行

      真正一起执行,任务数小于等于CPU核心数

    • 并发是逻辑上的同时发生,并行更多是侧重于物理上的同时发生。

  • 实现多任务的方式

    • 多进程模式

      启动多个进程,每个进程虽然只有一个线程,但是多个进程可以一起执行多个任务

    • 多线程模式

      启动一个进程,在一个进程的内部启动多个线程,这样多个线程也可以一起执行多个任务

    • 多进程+多线程

      启动多个进程,每个进程再启动多个线程

    • 协程

    • 多进程+协程

二、进程

1、概念

  • 什么是进程?

    是计算机中的程序关于某数据集合上的一次运行活动,是系统进行资源分配和调度的基本单位,是操作系统结构的基础。

  • 对于操作系统

    一个任务就是一个进程。比方说打开浏览器就是启动一个浏览器的进程,在打开一个记事本就启动一个记事本进程,如果打开两个记事本就启动两个记事本进程

2、使用进程

  • 单进程现象

    需要等待代码执行完后再执行下一段代码

    import time
    
    def run1():
        while 1:
            print("lucky is a good man")
            time.sleep(1)
    
    def run2():
        while 1:
            print("lucky is a nice man")
            time.sleep(1)
    
    if __name__ == "__main__":
        run1()
        # 不会执行run2()函数,只有上面的run1()结束才能执行run2()
        run2()
    
  • 启动进程实现多任务

    • multiprocessing模块

      跨平台的多进程模块,提供了一个Process类用来示例化一个进程对象

    • Process类

      作用:创建进程(子进程)

    • __name__

      这是 Windows 上多进程的实现问题。在 Windows 上,子进程会自动 import 启动它的这个文件,而在 import 的时候是会执行这些语句的。如果你这么写的话就会无限递归创建子进程报错。所以必须把创建子进程的部分用那个 if 判断保护起来,import 的时候 __name__ 不是 __main__ ,就不会递归运行了。

      | 参数 | 说明 |
      | ------ | -------------------------------- |
      | target | 指定进程执行的任务 |
      | args | 给进程函数传递的参数,是一个元组 |

      注意:此时进程被创建,但是不会启动进程执行

    • 启动进程实现多任务

      from multiprocessing import Process

      创建子进程

      P = Process(target=run,args=("nice",),name='当前进程名称')

      • target指定 子进程运行的函数

      • args 指定传递的参数 , 是元组类型

      • 启动进程:Process对象.start()

      获取进程信息

      • os.getpid() 获取当前进程id号
      • os.getppid() 获取当前进程的父进程id号
      • multiprocessing.current_process().name 获取当前进程名称

      父子进程的先后顺序

      • 默认 父进程的结束不能影响子进程 让父进程等待子进程结束再执行父进程

      • p.join() 阻塞当前进程,直到调用join方法的那个进程执行完,再继续执行当前进程。

      • 全局变量在过个进程中不能共享

        注意: 在子线程中修改全局变量时对父进程中的全局变量没有影响

    • 示例代码

      import time
      
      from multiprocessing import Process
      
      def run1(name):
          while 1:
              print("%s is a good man"%name)
              time.sleep(1)
      
      def run2():
          while 1:
              print("lucky is a nice man")
              time.sleep(1)
      
      if __name__ == "__main__":
          # 程序启动时的进程称为主进程(父进程)
      
          # 创建进程并启动
          p = Process(target=run1, args=("lucky",))
          p.start()
      
          # 主进程执行run2()函数
          run2()
      
  • 主进程负责调度

    主进程主要做的是调度相关的工作,一般不负责具体业务逻辑

    import time
    from multiprocessing import Process
    
    def run1():
        for i in range(7):
            print("lucky is a good man")
            time.sleep(1)
    
    def run2(name, word):
        for i in range(5):
            print("%s is a %s man"%(name, word))
            time.sleep(1)
    
    if __name__ == "__main__":
        t1 = time.time()
    
        # 创建两个进程分别执行run1、run2
        p1 = Process(target=run1)
        p2 = Process(target=run2, args=("lucky", "cool"))
    
        # 启动两个进程
        p1.start()
        p2.start()
    
        # 查看耗时
        t2 = time.time()
        print("耗时:%.2f"%(t2-t1))
    
  • 父子进程的先后顺序

    主进程的结束不能影响子进程,所以可以等待子进程的结束再结束主进程,等待子进程结束,才能继续运行主进程

    p.join() 阻塞当前进程,直到调用join方法的那个进程执行完,再继续执行当前进程。

    import time
    from multiprocessing import Process
    
    def run1():
        for i in range(7):
            print("lucky is a good man")
            time.sleep(1)
    
    def run2(name, word):
        for i in range(5):
            print("%s is a %s man"%(name, word))
            time.sleep(1)
    
    if __name__ == "__main__":
        t1 = time.time()
    
        p1 = Process(target=run1)
        p2 = Process(target=run2, args=("lucky", "cool"))
    
        p1.start()
        p2.start()
    
        # 主进程的结束不能影响子进程,所以可以等待子进程的结束再结束主进程
        # 等待子进程结束,才能继续运行主进程
        p1.join()
        p2.join()
    
        t2 = time.time()
        print("耗时:%.2f"%(t2-t1))
    

3、全局变量在多个子进程中不能共享

原因:

​ 在创建子进程时对全局变量做了一个备份,父进程中num变量与子线程中的num不是一个变量

from multiprocessing import Process
#全局变量在进程中 不能共享
num = 10
def run():
    print("我是子进程的开始")
    global num
    num+=1
    print(num)
    print("我是子进程的结束")
if __name__=="__main__":
    p = Process(target=run)
    p.start()
    p.join()

    print(num)

尝试列表是否能共享

from multiprocessing import Process
#全局变量在进程中 不能共享
mylist = []
def run():
    print("我是子进程的开始")
    global mylist
    mylist.append(1)
    mylist.append(2)
    mylist.append(3)
    print("我是子进程的结束")

if __name__=="__main__":
    p = Process(target=run)
    p.start()
    p.join()

    print(mylist)

4、启动大量子进程

  • 获取CPU核心数

    print('CPU number:' + str(multiprocessing.cpu_count()))

  • 导入

    from multiprocesssing import Pool

  • 开启并发数

    pp = Pool([参数]) #开启并发数 默认是你的核心数

  • 创建子进程,并放入进程池管理

    apply_async为非阻塞模式(并发执行)

    pp.apply_async(run,args=(i,)) #args参数 可以为元组 或者是列表[]

  • 关闭进程池

    pp.close()关闭进程池

  • join()

    在调用join之前必须先调用close,调用close之后就不能再继续添加新的进程了

    pp.join()

    进程池对象调用join,会等待进程池中所有的子进程结束完毕再去执行父进程

  • 实例

    # Pool类:进程池类
    from multiprocessing import Pool
    import time
    import random
    import multiprocessing
    
    def run(index):
        print('CPU number:' + str(multiprocessing.cpu_count()))
        print("子进程 %d 启动"%(index))
        t1 = time.time()
        time.sleep(random.random()* 5+2)
        t2 = time.time()
        print("子进程 %d 结束,耗时:%.2f" % (index, t2-t1))
    
    if __name__ == "__main__":
        print("启动主进程……")
    
        # 创建进程池对象
        # 由于pool的默认值为CPU的核心数,假设有4核心,至少需要5个子进程才能看到效果
        # Pool()中的值表示可以同时执行进程的数量
        pool = Pool(2)
        for i in range(1, 7):
            # 创建子进程,并将子进程放到进程池中统一管理
            pool.apply_async(run, args=(i,))
    
        # 等待子进程结束
        # 关闭进程池:在关闭后就不能再向进程池中添加进程了
        # 进程池对象在调用join之前必须先关闭进程池
        pool.close()
        #pool对象调用join,主进程会等待进程池中的所有子进程结束才会继续执行主进程
        pool.join()
    
        print("结束主进程……")
    

    get方法:获取进程的返回值

    from multiprocessing import Lock, Pool
    import time
    
    def function(index):
        print('Start process: ', index)
        time.sleep(2)
        print('End process', index)
        return index
    

if name == 'main':
pool = Pool(processes=3)
for i in range(4):
result = pool.apply_async(function, (i,))
print(result.get()) #获取每个 子进程的返回值
print("Started processes")
pool.close()
pool.join()
print("Subprocess done.")

  注意:这样来获取每个进程的返回值 那么就会变成单进程

### 5、map方法

+ 概述

  如果你现在有一堆数据要处理,每一项都需要经过一个方法来处理,那么map非常适合

  比如现在你有一个数组,包含了所有的URL,而现在已经有了一个方法用来抓取每个URL内容并解析,那么可以直接在map的第一个参数传入方法名,第二个参数传入URL数组。

+ 概述

  ```python
  from multiprocessing import Pool
  import requests
  from requests.exceptions import ConnectionError

  def scrape(url):
      try:
          print(requests.get(url))
      except ConnectionError:
          print('Error Occured ', url)
      finally:
          print('URL', url, ' Scraped')


  if __name__ == '__main__':
      pool = Pool(processes=3)
      urls = [
          'https://www.baidu.com',
          'http://www.meituan.com/',
          'http://blog.csdn.net/',
          'http://xxxyxxx.net'
      ]
      pool.map(scrape, urls)

在这里初始化一个Pool,指定进程数为3,如果不指定,那么会自动根据CPU内核来分配进程数。

然后有一个链接列表,map函数可以遍历每个URL,然后对其分别执行scrape方法。

6、单进程与多进程复制文件对比

  • 单进程复制文件

    import time
    
    def copy_file(path, toPath):
        with open(path, "rb") as fp1:
            with open(toPath, "wb") as fp2:
                while 1:
                    info = fp1.read(1024)
                    if not info:
                        break
                    else:
                        fp2.write(info)
                        fp2.flush()
    
    if __name__ == "__main__":
        t1 = time.time()
    
        for i in range(1, 5):
            path = r"/Users/lucky/Desktop/file/%d.mp4"%i
            toPath = r"/Users/lucky/Desktop/file2/%d.mp4"%i
            copy_file(path, toPath)
    
        t2 = time.time()
        print("单进程耗时:%.2f"%(t2-t1))
    
  • 多进程复制文件

    import time
    from multiprocessing import Pool
    import os
    
    def copy_file(path, toPath):
        with open(path, "rb") as fp1:
            with open(toPath, "wb") as fp2:
                while 1:
                    info = fp1.read(1024)
                    if not info:
                        break
                    else:
                        fp2.write(info)
                        fp2.flush()
    
    if __name__ == "__main__":
        t1 = time.time()
        path = r"/Users/xialigang/Desktop/视频"
        dstPath = r"/Users/xialigang/Desktop/1视频"
        fileList = os.listdir(path)
        pool = Pool()
    
        for i in fileList:
            newPath1 = os.path.join(path, i)
            newPath2 = os.path.join(dstPath, i)
            pool.apply_async(copy_file, args=(newPath1, newPath2))
    
        pool.close()
        pool.join()
    
        t2 = time.time()
        print("耗时:%.2f"%(t2-t1))
    

7、进程间通信

  • 队列共享

    • 导入

      from multiprocessing import Queue

    • 使用

      que = Queue() #创建队列

      que.put(数据) #压入数据

      que.get() #获取数据

    • 队列常用函数

      Queue.empty() 如果队列为空,返回True, 反之False

      Queue.full() 如果队列满了,返回True,反之False

      Queue.get([block[, timeout]]) 获取队列,timeout等待时间

      Queue.get_nowait() 相当Queue.get(False)

      Queue.put(item) 阻塞式写入队列,timeout等待时间

      Queue.put_nowait(item) 相当Queue.put(item, False)

    • 特点:先进先出

    • 注意:

      get方法有两个参数,blocked和timeout,意思为阻塞和超时时间。默认blocked是true,即阻塞式。

      当一个队列为空的时候如果再用get取则会阻塞,所以这时候就需要吧blocked设置为false,即非阻塞式,实际上它就会调用get_nowait()方法,此时还需要设置一个超时时间,在这么长的时间内还没有取到队列元素,那就抛出Queue.Empty异常。

      当一个队列为满的时候如果再用put放则会阻塞,所以这时候就需要吧blocked设置为false,即非阻塞式,实际上它就会调用put_nowait()方法,此时还需要设置一个超时时间,在这么长的时间内还没有放进去元素,那就抛出Queue.Full异常。

      另外队列中常用的方法

    • 队列的大小

      Queue.qsize() 返回队列的大小 ,不过在 Mac OS 上没法运行。

    实例

    import multiprocessing
    queque = multiprocessing.Queue() #创建 队列
    #如果在子进程 和主进程 之间 都压入了数据 那么在主进程 和 子进程 获取的就是 对方的数据
    def fun(myque):
        # print(id(myque)) #获取当前的队列的存储地址  依然是拷贝了一份
        myque.put(['a','b','c']) #在子进程里面压入数据
        # print("子进程获取",myque.get())#获取队列里面的值
    
    if __name__=='__main__':
        # print(id(queque))
        queque.put([1,2,3,4,5]) #将列表压入队列  如果主进程也压入了数据 那么在主进程取的就是在主进程压入的数据 而不是子进程的
        p = multiprocessing.Process(target=fun,args=(queque,))
        p.start()
        p.join()
        print("主进程获取",queque.get())#在主进程进行获取
        print("主进程获取",queque.get())#在主进程进行获取
        # print("主进程获取",queque.get(block=True, timeout=1))#在主进程进行获取
    
  • 字典共享

    • 导入

      import multiprocess

    • 概述

      Manager是一个进程间高级通信的方法 支持Python的字典和列表的数据类型

    • 创建字典

      myDict = multiprocess.Manager().dict()

    实例

    import multiprocessing
    

def fun(mydict):

  # print(mylist)
  mydict['x'] = 'x'
  mydict['y'] = 'y'
  mydict['z'] = 'z'

if name=='main':

  # Manager是一种较为高级的多进程通信方式,它能支持Python支持的的任何数据结构。
  mydict = multiprocessing.Manager().dict()
  p = multiprocessing.Process(target=fun,args=(mydict,))
  p.start()
  p.join()
  print(mydict)
- 列表共享

  + 导入

    import multiprocess

  + 创建列表

    myDict = multiprocess.Manager().list()

  实例(字典与列表共享)

  ```python
  import multiprocessing


  def fun(List):
      # print(mylist)
      List.append('x')
      List.append('y')
      List.append('z')


  if __name__=='__main__':
      # Manager是一种较为高级的多进程通信方式,它能支持Python支持的的任何数据结构。
      List = multiprocessing.Manager().list()
      p = multiprocessing.Process(target=fun,args=(List,))
      p.start()
      p.join()
      print(List)
  • 注意

    进程名.terminate() 强行终止子进程

  • deamon

    在这里介绍一个属性,叫做deamon。每个进程程都可以单独设置它的属性,如果设置为True,当父进程结束后,子进程会自动被终止。

    进程.daemon = True

    设置在start()方法之前

    import multiprocessing
    import time
    def fun():
        time.sleep(100)
    if __name__=='__main__':
        p = multiprocessing.Process(target=fun)
        p.daemon = True
        p.start()
        print('over')
    
  • 进程名.terminate() 强行终止子进程

    import multiprocessing
    import time
    def fun():
        time.sleep(100)
    if __name__=='__main__':
        p = multiprocessing.Process(target=fun)
        p.start()
        p.terminate()
        p.join()
        print('over')
    

8、进程实现生产者消费者

生产者消费者模型描述:

生产者是指生产数据的任务,消费者是指消费数据的任务。

当生产者的生产能力远大于消费者的消费能力,生产者就需要等消费者消费完才能继续生产新的数据,同理,如果消费者的消费能力远大于生产者的生产能力,消费者就需要等生产者生产完数据才能继续消费,这种等待会造成效率的低下,为了解决这种问题就引入了生产者消费者模型。

生产者/消费者问题可以描述为:两个或者更多的进程(线程)共享同一个缓冲区,其中一个或多个进程(线程)作为“生产者”会不断地向缓冲区中添加数据,另一个或者多个进程(线程)作为“消费者”从缓冲区中取走数据。

  • 代码

    from multiprocessing import Process
    from multiprocessing import Queue
    import time
    
    def product(q):
        print("启动生产子进程……")
        for data in ["good", "nice", "cool", "handsome"]:
            time.sleep(2)
            print("生产出:%s"%data)
            # 将生产的数据写入队列
            q.put(data)
        print("结束生产子进程……")
    
    def t(q):
        print("启动消费子进程……")
        while 1:
            print("等待生产者生产数据")
            # 获取生产者生产的数据,如果队列中没有数据会阻塞,等待队列中有数据再获取
            value = q.get()
            print("消费者消费了%s数据"%(value))
        print("结束消费子进程……")
    
    if __name__ == "__main__":
        q = Queue()
    
        p1 = Process(target=product, args=(q,))
        p2 = Process(target=customer, args=(q,))
    
        p1.start()
        p2.start()
    
        p1.join()
        # p2子进程里面是死循环,无法等待它的结束
        # p2.join()
        # 强制结束子进程
        p2.terminate()
    
        print("主进程结束")
    

9、案例(抓取斗图)

from multiprocessing import Process,Queue
from concurrent.futures import ThreadPoolExecutor
from lxml import etree
import time
import requests

headers = {
   
    "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/99.0.4844.84 Safari/537.36"
}

def get_img_src(url, q):
    """
    进程1: 负责提取页面中所有的img的下载地址
    将图片的下载地址通过队列. 传输给另一个进程进行下载
    """

    resp = requests.get(url, headers=headers)
    tree = etree.HTML(resp.text)
    srcs = tree.xpath("//li[@class='list-group-item']//img[@referrerpolicy='no-referrer']/@data-original")
    for src in srcs:
        q.put(src.strip())
    resp.close()



def download_img(q):
    """
        进程2: 将图片的下载地址从队列中提取出来. 进行下载.
   """
    with ThreadPoolExecutor(20) as t:
        while 1:
            try:
                s = q.get(timeout=20)
                t.submit(donwload_one, s)
            except Exception as e:
                print(e)
                break

def donwload_one(s):
    # 单纯的下载功能
    resp = requests.get(s, headers=headers)
    file_name = s.split("/")[-1]
    # 请提前创建好img文件夹
    with open(f"img/{file_name}", mode="wb") as f:
        f.write(resp.content)
    print("一张图片下载完毕", file_name)
    resp.close()

if __name__ == '__main__':
    t1 = time.time()
    q = Queue()  # 两个进程必须使用同一个队列. 否则数据传输不了
    p_list = []
    for i in range(1, 11):
        url = f"https://www.pkdoutu.com/photo/list/?page={i}"
        p = Process(target=get_img_src, args=(url, q))
        p_list.append(p)
    for p in p_list:
        p.start()
    p2 = Process(target=download_img, args=(q,))
    p2.start()
    for p in p_list:
        p.join()
    p2.join()
    print((time.time()-t1)/60)
# 0.49572664896647134
相关文章
|
2月前
|
并行计算 数据处理 调度
Python中的并发编程:探索多线程与多进程的奥秘####
本文深入探讨了Python中并发编程的两种主要方式——多线程与多进程,通过对比分析它们的工作原理、适用场景及性能差异,揭示了在不同应用需求下如何合理选择并发模型。文章首先简述了并发编程的基本概念,随后详细阐述了Python中多线程与多进程的实现机制,包括GIL(全局解释器锁)对多线程的影响以及多进程的独立内存空间特性。最后,通过实例演示了如何在Python项目中有效利用多线程和多进程提升程序性能。 ####
|
3月前
|
Python
Python中的多线程与多进程
本文将探讨Python中多线程和多进程的基本概念、使用场景以及实现方式。通过对比分析,我们将了解何时使用多线程或多进程更为合适,并提供一些实用的代码示例来帮助读者更好地理解这两种并发编程技术。
|
2月前
|
监控 JavaScript 前端开发
python中的线程和进程(一文带你了解)
欢迎来到瑞雨溪的博客,这里是一位热爱JavaScript和Vue的大一学生分享技术心得的地方。如果你从我的文章中有所收获,欢迎关注我,我将持续更新更多优质内容,你的支持是我前进的动力!🎉🎉🎉
29 0
|
3月前
|
数据挖掘 程序员 调度
探索Python的并发编程:线程与进程的实战应用
【10月更文挑战第4天】 本文深入探讨了Python中实现并发编程的两种主要方式——线程和进程,通过对比分析它们的特点、适用场景以及在实际编程中的应用,为读者提供清晰的指导。同时,文章还介绍了一些高级并发模型如协程,并给出了性能优化的建议。
42 3
|
4月前
|
负载均衡 Java 调度
探索Python的并发编程:线程与进程的比较与应用
本文旨在深入探讨Python中的并发编程,重点比较线程与进程的异同、适用场景及实现方法。通过分析GIL对线程并发的影响,以及进程间通信的成本,我们将揭示何时选择线程或进程更为合理。同时,文章将提供实用的代码示例,帮助读者更好地理解并运用这些概念,以提升多任务处理的效率和性能。
71 3
|
3月前
|
存储 Python
Python中的多进程通信实践指南
Python中的多进程通信实践指南
35 0
|
4月前
|
监控 Ubuntu API
Python脚本监控Ubuntu系统进程内存的实现方式
通过这种方法,我们可以很容易地监控Ubuntu系统中进程的内存使用情况,对于性能分析和资源管理具有很大的帮助。这只是 `psutil`库功能的冰山一角,`psutil`还能够提供更多关于系统和进程的详细信息,强烈推荐进一步探索这个强大的库。
57 1
|
4月前
|
Python
惊!Python进程间通信IPC,让你的程序秒变社交达人,信息畅通无阻
【9月更文挑战第13天】在编程的世界中,进程间通信(IPC)如同一场精彩的社交舞会,每个进程通过优雅的IPC机制交换信息,协同工作。本文将带你探索Python中的IPC奥秘,了解它是如何让程序实现无缝信息交流的。IPC如同隐形桥梁,连接各进程,使其跨越边界自由沟通。Python提供了多种IPC机制,如管道、队列、共享内存及套接字,适用于不同场景。通过一个简单的队列示例,我们将展示如何使用`multiprocessing.Queue`实现进程间通信,使程序如同社交达人般高效互动。掌握IPC,让你的程序在编程舞台上大放异彩。
31 3
|
3月前
|
数据采集 消息中间件 Python
Python爬虫-进程间通信
Python爬虫-进程间通信
22 0
|
4月前
|
数据采集 Linux 调度
Python之多线程与多进程
Python之多线程与多进程
36 0