Python十段经典代码总结

简介: Python十段经典代码总结

for - else
十大装B语法,for-else 绝对算得上囊波湾!不信,请看:

for i in [1,2,3,4]:
print(i)
else:
print(i, '我是else')

1
2
3
4
4 我是else
else 的眼里只有 for,只要 for 顺利执行完毕,else 就会屁颠儿屁颠儿地跑一遍:

for i in [1,2,3,4]:
if i > 2:
print(i)
else:
print(i, '我是else')

3
4
4 我是else
只有当 for 循环被 break 语句中断之后,才会跳过 else 语句:

for i in [1,2,3,4]:
if i>2:
print(i)
break
else:
print(i, '我是else')

3
一颗星()和两颗星(*)

def multi_sum(*args):
s = 0
for item in args:
s += item
return s

multi_sum(3,4,5)
12
Python 函数允许同时全部或部分使用固定参数、默认参数、单值(一颗星)可变参数、键值对(两颗星)可变参数,使用时必须按照前述顺序书写。

def do_something(name, age, gender='男', args, *kwds):
print('姓名:%s,年龄:%d,性别:%s'%(name, age, gender))
print(args)
print(kwds)

do_something('xufive', 50, '男', 175, 75, math=99, english=90)
姓名:xufive,年龄:50,性别:男
(175, 75)
{'math': 99, 'english': 90}
三元表达式
y = 5
if y < 0:
print('y是一个负数')
else:
print('y是一个非负数')

y是一个非负数
其实,python 是支持三元表达式的,只是稍微怪异了一点,类似于我们山东人讲话。比如,山东人最喜欢用倒装句:打球去吧,要是不下雨的话;下雨,咱就去自习室。翻译成三元表达式就是:
打球去吧 if 不下雨 else 去自习室
来看看三元表达式具体的使用:

y = 5
print('y是一个负数' if y < 0 else 'y是一个非负数')
y是一个非负数
python 的三元表达式也可以用来赋值:
y = 5
x = -1 if y < 0 else 1
x
1
with - as
with 语句适合一些事先需要准备,事后需要处理的任务,比如,文件操作,需要先打开文件,操作完成后需要关闭文件。如果不使用with,文件操作通常得这样:

fp = open(r"D:\phyger\Column\temp\mpmap.py", 'r')
try:
contents = fp.readlines()
finally:
fp.close()
如果使用 with - as,那就优雅多了:

with open(r"D:\phyger\Column\temp\mpmap.py", 'r') as fp:
contents = fp.readlines()
列表推导式
求列表各元素的平方,通常应该这样写(当然也有其他写法,比如使用map函数):

a = [1, 2, 3, 4, 5]
result = list()
for i in a:
result.append(i*i)

result
[1, 4, 9, 16, 25]
如果使用列表推导式,看起来就舒服多了:

a = [1, 2, 3, 4, 5]
result = [i*i for i in a]
result
[1, 4, 9, 16, 25]
事实上,推导式不仅支持列表,也支持字典、集合、元组等对象。

列表索引的各种骚操作

a = [0, 1, 2, 3, 4, 5]
a[2:4]
[2, 3]
a[3:]
[3, 4, 5]
a[1:]
[1, 2, 3, 4, 5]
a[:]
[0, 1, 2, 3, 4, 5]
a[::2]
[0, 2, 4]
a[1::2]
[1, 3, 5]
a[-1]
5
a[-2]
4
a[1:-1]
[1, 2, 3, 4]
a[::-1]
[5, 4, 3, 2, 1, 0]
如果说,这些你都很熟悉,也经常用,那么接下来这个用法,你一定会感觉很神奇:

a = [0, 1, 2, 3, 4, 5]
b = ['a', 'b']
a[2:2] = b
a
[0, 1, 'a', 'b', 2, 3, 4, 5]
a[3:6] = b
a
[0, 1, 'a', 'a', 'b', 4, 5]
lambda函数
下面是一个求和的匿名函数,输入参数有两个,x和y,函数体就是x+y,省略了return关键字。

lambda x,y: x+y

at 0x000001B2DE5BD598>
(lambda x,y: x+y)(3,4) # 因为匿名函数没有名字,使用的时候要用括号把它包起来
匿名函数一般不会单独使用,而是配合其他方法,为其他方法提供内置的算法或判断条件。比如,使用排序函数sorted对多维数组或者字典排序时,就可以指定排序规则。

a = [{'name':'B', 'age':50}, {'name':'A', 'age':30}, {'name':'C', 'age':40}]
sorted(a, key=lambda x:x['name']) # 按姓名排序
[{'name': 'A', 'age': 30}, {'name': 'B', 'age': 50}, {'name': 'C', 'age': 40}]
sorted(a, key=lambda x:x['age']) # 按年龄排序
[{'name': 'A', 'age': 30}, {'name': 'C', 'age': 40}, {'name': 'B', 'age': 50}]
再举一个数组元素求平方的例子,这次用map函数:

a = [1,2,3]
for item in map(lambda x:x*x, a):
print(item, end=', ')

1, 4, 9,
yield 以及生成器和迭代器
pyrhon内置了迭代函数 iter,用于生成迭代器,用法如下:

a = [1,2,3]
a_iter = iter(a)
a_iter


for i in a_iter:
print(i, end=', ')

1, 2, 3,
yield 则是用于构造生成器的。比如,我们要写一个函数,返回从0到某正整数的所有整数的平方,传统的代码写法是这样的:

def get_square(n):
result = list()
for i in range(n):
result.append(pow(i,2))
return result
//代码效果参考:http://www.ezhiqi.com/zx/art_1392.html

print(get_square(5))
[0, 1, 4, 9, 16]
但是如果计算1亿以内的所有整数的平方,这个函数的内存开销会非常大,这是 yield 就可以大显身手了:

def get_square(n):
for i in range(n):
yield(pow(i,2))

a = get_square(5)
a


for i in a:
print(i, end=', ')
//代码效果参考:http://www.ezhiqi.com/bx/art_4281.html

0, 1, 4, 9, 16,
如果再次遍历,则不会有输出了。

装饰器
下面的例子,很好地展示了装饰器的优势。

import time
def timer(func):
def wrapper(args,**kwds):
t0 = time.time()
func(
args,**kwds)
t1 = time.time()
print('耗时%0.3f'%(t1-t0,))
return wrapper

@timer
def do_something(delay):
print('函数do_something开始')
time.sleep(delay)
print('函数do_something结束')

do_something(3)
函数do_something开始
函数do_something结束
耗时3.077
timer() 是我们定义的装饰器函数,使用@把它附加在任何一个函数(比如do_something)定义之前,就等于把新定义的函数,当成了装饰器函数的输入参数。运行 do_something() 函数,可以理解为执行了timer(do_something) 。

巧用断言assert
所谓断言,就是声明表达式的布尔值必须为真的判定,否则将触发 AssertionError 异常。

def i_want_to_sleep(delay):
assert(isinstance(delay, (int,float))), '函数参数必须为整数或浮点数'
print('开始睡觉')
time.sleep(delay)
print('睡醒了')

//代码效果参考:http://www.ezhiqi.com/bx/art_4487.html

i_want_to_sleep(1.1)
开始睡觉
睡醒了
i_want_to_sleep(2)
开始睡觉
睡醒了
i_want_to_sleep('2')
Traceback (most recent call last):
File "", line 1, in
i_want_to_sleep('2')
File "", line 2, in i_want_to_sleep
assert(isinstance(delay, (int,float))), '函数参数必须为整数或浮点数'
AssertionError: 函数参数必须为整数或浮点数

相关文章
|
9天前
|
缓存 监控 测试技术
Python中的装饰器:功能扩展与代码复用的利器###
本文深入探讨了Python中装饰器的概念、实现机制及其在实际开发中的应用价值。通过生动的实例和详尽的解释,文章展示了装饰器如何增强函数功能、提升代码可读性和维护性,并鼓励读者在项目中灵活运用这一强大的语言特性。 ###
|
13天前
|
缓存 开发者 Python
探索Python中的装饰器:简化代码,增强功能
【10月更文挑战第35天】装饰器在Python中是一种强大的工具,它允许开发者在不修改原有函数代码的情况下增加额外的功能。本文旨在通过简明的语言和实际的编码示例,带领读者理解装饰器的概念、用法及其在实际编程场景中的应用,从而提升代码的可读性和复用性。
|
9天前
|
Python
探索Python中的装饰器:简化代码,提升效率
【10月更文挑战第39天】在编程的世界中,我们总是在寻找使代码更简洁、更高效的方法。Python的装饰器提供了一种强大的工具,能够让我们做到这一点。本文将深入探讨装饰器的基本概念,展示如何通过它们来增强函数的功能,同时保持代码的整洁性。我们将从基础开始,逐步深入到装饰器的高级用法,让你了解如何利用这一特性来优化你的Python代码。准备好让你的代码变得更加优雅和强大了吗?让我们开始吧!
16 1
|
14天前
|
设计模式 缓存 监控
Python中的装饰器:代码的魔法增强剂
在Python编程中,装饰器是一种强大而灵活的工具,它允许程序员在不修改函数或方法源代码的情况下增加额外的功能。本文将探讨装饰器的定义、工作原理以及如何通过自定义和标准库中的装饰器来优化代码结构和提高开发效率。通过实例演示,我们将深入了解装饰器的应用,包括日志记录、性能测量、事务处理等常见场景。此外,我们还将讨论装饰器的高级用法,如带参数的装饰器和类装饰器,为读者提供全面的装饰器使用指南。
|
9天前
|
存储 缓存 监控
掌握Python装饰器:提升代码复用性与可读性的利器
在本文中,我们将深入探讨Python装饰器的概念、工作原理以及如何有效地应用它们来增强代码的可读性和复用性。不同于传统的函数调用,装饰器提供了一种优雅的方式来修改或扩展函数的行为,而无需直接修改原始函数代码。通过实际示例和应用场景分析,本文旨在帮助读者理解装饰器的实用性,并鼓励在日常编程实践中灵活运用这一强大特性。
|
14天前
|
存储 算法 搜索推荐
Python高手必备!揭秘图(Graph)的N种风骚表示法,让你的代码瞬间高大上
在Python中,图作为重要的数据结构,广泛应用于社交网络分析、路径查找等领域。本文介绍四种图的表示方法:邻接矩阵、邻接表、边列表和邻接集。每种方法都有其特点和适用场景,掌握它们能提升代码效率和可读性,让你在项目中脱颖而出。
28 5
|
12天前
|
机器学习/深度学习 数据采集 人工智能
探索机器学习:从理论到Python代码实践
【10月更文挑战第36天】本文将深入浅出地介绍机器学习的基本概念、主要算法及其在Python中的实现。我们将通过实际案例,展示如何使用scikit-learn库进行数据预处理、模型选择和参数调优。无论你是初学者还是有一定基础的开发者,都能从中获得启发和实践指导。
27 2
|
14天前
|
数据库 Python
异步编程不再难!Python asyncio库实战,让你的代码流畅如丝!
在编程中,随着应用复杂度的提升,对并发和异步处理的需求日益增长。Python的asyncio库通过async和await关键字,简化了异步编程,使其变得流畅高效。本文将通过实战示例,介绍异步编程的基本概念、如何使用asyncio编写异步代码以及处理多个异步任务的方法,帮助你掌握异步编程技巧,提高代码性能。
49 4
|
15天前
|
缓存 开发者 Python
探索Python中的装饰器:简化和增强你的代码
【10月更文挑战第32天】 在编程的世界中,简洁和效率是永恒的追求。Python提供了一种强大工具——装饰器,它允许我们以声明式的方式修改函数的行为。本文将深入探讨装饰器的概念、用法及其在实际应用中的优势。通过实际代码示例,我们不仅理解装饰器的工作方式,还能学会如何自定义装饰器来满足特定需求。无论你是初学者还是有经验的开发者,这篇文章都将为你揭示装饰器的神秘面纱,并展示如何利用它们简化和增强你的代码库。
|
14天前
|
API 数据处理 Python
探秘Python并发新世界:asyncio库,让你的代码并发更优雅!
在Python编程中,随着网络应用和数据处理需求的增长,并发编程变得愈发重要。asyncio库作为Python 3.4及以上版本的标准库,以其简洁的API和强大的异步编程能力,成为提升性能和优化资源利用的关键工具。本文介绍了asyncio的基本概念、异步函数的定义与使用、并发控制和资源管理等核心功能,通过具体示例展示了如何高效地编写并发代码。
25 2