大数据助力部队管理模式创新

本文涉及的产品
数据管理 DMS,安全协同 3个实例 3个月
推荐场景:
学生管理系统数据库
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
简介:

大数据时代的来临,给各行各业带来了数据使用方式的根本性转变,也为部队管理提供了全新理念方法,部队管理应充分运用大数据技术、发挥大数据优势,推动建立用数据决策、用数据管理、用数据创新的全新管理模式。

大数据为部队管理带来一系列机遇

大数据能为部队管理提供更有力的数据支撑。长期以来,受限于数据采集、存储和管理,从纷繁复杂的各类管理数据中总结梳理规律性的认知,更多依赖于随机采用少量数据分析,其全面性、系统性、准确性都大打折扣。大数据则能提供海量的数据支持,使管理者可用的数据成几何数增长,有时甚至可以占有与某个特别现象相关的所有数据,从而实现管理调查从抽样数据到全样本数据的转变。

大数据能为部队管理带来更具前瞻性的分析预测。大数据的核心就是预测,它能把数学算法运用到海量数据上来预测事情发生的可能性,从而有效避免以往仅靠经验分析预测带来的以偏概全。这种基于大数据技术的预测能力,对部队各方面管理具有非常大的现实意义。

大数据能及时发现部队管理中的新情况新问题。科学管理的前提是遵循规律,遵循规律的前提是发现规律。随着形势任务发展,部队管理不断出现新情况新问题,管理者如果凭借个人经验或采取随机取样的方法来分析判断,往往会“一叶障目,不见泰山”,难以达到理想效果。相比而言,大数据则能让数据“说话”,从浩瀚的数据中不断发现新的现象和规律,为有针对性地做好工作奠定基础。

大数据能更加有效地抓住人这个管理重点。大数据时代,每个人几乎都是透明性存在的,所留在数据空间的痕迹,反映着其性格、偏好、意愿等。一旦有必要,管理者通过对有关数据的收集和分析,便能全面准确了解和把握官兵的需求特征、兴趣爱好、行为倾向及个性心理等,从而具备预判官兵未来行为的可能。

借助大数据创新部队管理模式并非一蹴而就

当然,从现实情况看,借助大数据创新部队管理模式,也需解决一些问题和挑战。

破解“用”数据意识不牢的问题。从历史上看,我军重谋略轻数据的传统客观存在,无论战时打仗还是平时管理,多半聚焦于谋略与经验,鲜讲数据和技术。时至今日,尽管也知晓数据分析的科学有效,但仍摆脱不了经验主义束缚,经常是讲的多做的少。个别看似很重数据分析的工作,实则是冠大数据之名而无大数据之实。因此,真正将数据分析作为一种打仗和管理模式立起来,还有很长一段路要走。

完善“建”数据的路径机制。经过多年发展特别是信息化建设,各部队已积累了大量基础数据,为科学管理提供了有力支撑。但因缺乏统一的数据收集和共享机制,采集的数据规模不等、格式不一、质量各异,往往是量大质劣,总体发展很不平衡,难以实现有效整合和共享共用,聚指成拳效果不明显。由此,有必要加强数据搜集和共享路径探索及相关机制的建立。

解决“读”数据专业人才缺乏的问题。用好大数据,“建库”是基础,“判读”是支撑。长期以来,部队管理工作以管人为重心,方法上以定性分析为主、定量分析为辅,而大数据时代的部队管理,核心是借助各类大数据分析软件,通过数学建模进行定量分析,管理者须具备数学、统计学、计算机技术等方面能力,否则就会在茫茫数据中迷失方向,专业人才短缺正是目前制约部队管理进入大数据时代的瓶颈所在。

“管”数据的法规还不健全。大数据是一柄双刃剑,运用得当能极大提高工作效率,管理不善也会带来隐患。目前,有关大数据的政策法规和安全防护措施还没有建立起来,存在数据被盗窃、篡改以及个人隐私泄露等安全隐患。

借助大数据推动部队管理创新

我们应以更加开放、前瞻、务实的姿态,积极主动迎接大数据时代的到来,推动部队管理创新发展。

转变观念给予高度重视。大数据不仅是一场技术变革,更是一场思想变革。可以说,谁掌握了“制数据权”,就掌握了“制信息权”。谁在大数据领域落后,就终将被这个时代淘汰。应牢固树立大数据理念,紧紧抓住数据这个管理核心要素,逐渐建立以数据为基础的管理体系,实现部队管理以定性分析为主、定量分析为辅向以定量分析为主、定性分析为辅的转变。

博采众长强化顶层设计。目前看,美国等发达国家在大数据的研发使用上起步早、投入多、见效大,一些大企业在这方面也已走到了前面,可以通过面向社会招标采购的形式,引入先进的大数据分析软件,在此基础上消化吸收,研发符合部队管理实际的软件工具。尤其要重视借鉴成功的商业大数据管理理念,强化大数据管理顶层设计,制定路线图,明确发展目标和路径,有条不紊积极推进。

统一标准加强数据管理。强化数据观念,广开收集渠道,加大收集力度,实现数据收集数量与质量的同步跃升,对于涉及部队管理重点内容、对象、环节等基础性信息,要尽可能多而全地收集录入。成立跨部门的数据管理机构,制定出台数据标准,形成明确的、一致的标准样板,即创建“本体”,以改变当前数据标准不一、互不兼容等问题。打破单位、部门、行业等壁垒,做到全数据上线、分层级管理、按权限使用,既满足预期的用户及需求,也能用于无法预期的用户及需求,真正实现数据的共建共管和共享共用。

多措并举建强人才队伍。大数据专业人才,不仅要熟悉部队管理业务,还要具备数学、统计学和计算机等方面知识,要高度重视人才队伍建设,加紧制定和实施有针对性的大数据人才培养计划,培养一批既懂部队管理又懂数据分析的人才,为我军大数据的管理提供智力支撑。





====================================分割线================================


本文转自d1net(转载)

相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps 
目录
相关文章
|
2月前
|
分布式计算 Kubernetes Hadoop
大数据-82 Spark 集群模式启动、集群架构、集群管理器 Spark的HelloWorld + Hadoop + HDFS
大数据-82 Spark 集群模式启动、集群架构、集群管理器 Spark的HelloWorld + Hadoop + HDFS
192 6
|
2月前
|
分布式计算 资源调度 Hadoop
大数据-80 Spark 简要概述 系统架构 部署模式 与Hadoop MapReduce对比
大数据-80 Spark 简要概述 系统架构 部署模式 与Hadoop MapReduce对比
83 2
|
2月前
|
消息中间件 监控 数据可视化
大数据-79 Kafka 集群模式 集群监控方案 JavaAPI获取集群指标 可视化监控集群方案: jconsole、Kafka Eagle
大数据-79 Kafka 集群模式 集群监控方案 JavaAPI获取集群指标 可视化监控集群方案: jconsole、Kafka Eagle
102 2
|
2月前
|
分布式计算 资源调度 大数据
大数据-110 Flink 安装部署 下载解压配置 Standalone模式启动 打包依赖(一)
大数据-110 Flink 安装部署 下载解压配置 Standalone模式启动 打包依赖(一)
82 0
|
2月前
|
分布式计算 资源调度 大数据
大数据-110 Flink 安装部署 下载解压配置 Standalone模式启动 打包依赖(二)
大数据-110 Flink 安装部署 下载解压配置 Standalone模式启动 打包依赖(二)
82 0
|
4月前
|
分布式计算 资源调度 大数据
【决战大数据之巅】:Spark Standalone VS YARN —— 揭秘两大部署模式的恩怨情仇与终极对决!
【8月更文挑战第7天】随着大数据需求的增长,Apache Spark 成为关键框架。本文对比了常见的 Spark Standalone 与 YARN 部署模式。Standalone 作为自带的轻量级集群管理服务,易于设置,适用于小规模或独立部署;而 YARN 作为 Hadoop 的资源管理系统,支持资源的统一管理和调度,更适合大规模生产环境及多框架集成。我们将通过示例代码展示如何在这两种模式下运行 Spark 应用程序。
280 3
|
1月前
|
SQL 存储 算法
基于对象 - 事件模式的数据计算问题
基于对象-事件模式的数据计算是商业中最常见的数据分析任务之一。对象如用户、账号、商品等,通过唯一ID记录其相关事件,如操作日志、交易记录等。这种模式下的统计任务包括无序计算(如交易次数、通话时长)和有序计算(如漏斗分析、连续交易检测)。尽管SQL在处理无序计算时表现尚可,但在有序计算中却显得力不从心,主要原因是其对跨行记录运算的支持较弱,且大表JOIN和大结果集GROUP BY的性能较差。相比之下,SPL语言通过强化离散性和有序集合的支持,能够高效地处理这类计算任务,避免了大表JOIN和复杂的GROUP BY操作,从而显著提升了计算效率。
|
2月前
|
存储 分布式计算 druid
大数据-152 Apache Druid 集群模式 配置启动【下篇】 超详细!(一)
大数据-152 Apache Druid 集群模式 配置启动【下篇】 超详细!(一)
44 1
大数据-152 Apache Druid 集群模式 配置启动【下篇】 超详细!(一)
|
2月前
|
SQL 存储 算法
基于对象 - 事件模式的数据计算问题
基于对象-事件模式的数据计算是商业中最常见的数据分析任务之一。这种模式涉及对象(如用户、账户、商品等)及其相关的事件记录,通过这些事件数据可以进行各种统计分析,如漏斗分析、交易次数统计等。然而,SQL 在处理这类任务时表现不佳,特别是在有序计算方面。SPL 作为一种强化离散性和有序集合的语言,能够高效地处理这类计算,避免了大表 JOIN 和大结果集 GROUP BY 的性能瓶颈。通过按 ID 排序和分步计算,SPL 能够显著提高计算效率,并支持实时数据处理。
|
2月前
|
分布式计算 大数据 分布式数据库
大数据-158 Apache Kylin 安装配置详解 集群模式启动(一)
大数据-158 Apache Kylin 安装配置详解 集群模式启动(一)
55 5