Hadoop 数据重分布的原则

简介: 【6月更文挑战第14天】

image.png
Hadoop数据重分布的原则主要包括以下几点:

  1. 数据不丢失:在执行数据重分布的过程中,必须保证数据不能出现丢失。这是数据重分布的首要原则,确保数据的完整性和安全性。
  2. 备份数不变:数据的备份数在重分布过程中不能改变。这意味着在数据迁移或重新分配时,数据的备份冗余度应保持不变,以维持数据的可靠性和容错性。
  3. Rack中的block数量不变:每一个rack(机架)中所具备的block数量在重分布过程中也不能改变。这有助于保持HDFS集群中数据的均衡分布,避免某个机架承载过多的数据负载。
  4. 可管理性:系统管理员可以通过一条命令启动或停止数据重分布程序。这种可管理性使得数据重分布过程更加灵活和可控,可以根据集群的实际情况进行调整和优化。
  5. 资源占用:Block在移动的过程中,不能暂用过多的资源,如网络带宽。这有助于减少数据迁移对集群性能的影响,确保集群在数据重分布过程中仍然能够保持高效的运行。
  6. 不影响NameNode:数据重分布程序在执行的过程中,不能影响NameNode的正常工作。NameNode是HDFS集群中的核心组件,负责管理和维护文件系统的元数据。确保NameNode的正常运行对于整个HDFS集群的稳定性和可用性至关重要。

以上原则共同构成了Hadoop数据重分布的基础框架,确保了数据在重新分配过程中的安全性、可靠性和高效性。在实际应用中,可以根据集群的具体情况和需求进行灵活调整和优化。

目录
相关文章
|
1月前
|
SQL 分布式计算 关系型数据库
Hadoop-21 Sqoop 数据迁移工具 简介与环境配置 云服务器 ETL工具 MySQL与Hive数据互相迁移 导入导出
Hadoop-21 Sqoop 数据迁移工具 简介与环境配置 云服务器 ETL工具 MySQL与Hive数据互相迁移 导入导出
49 3
|
1月前
|
分布式计算 Java Hadoop
Hadoop-30 ZooKeeper集群 JavaAPI 客户端 POM Java操作ZK 监听节点 监听数据变化 创建节点 删除节点
Hadoop-30 ZooKeeper集群 JavaAPI 客户端 POM Java操作ZK 监听节点 监听数据变化 创建节点 删除节点
61 1
|
1月前
|
SQL 分布式计算 关系型数据库
Hadoop-24 Sqoop迁移 MySQL到Hive 与 Hive到MySQL SQL生成数据 HDFS集群 Sqoop import jdbc ETL MapReduce
Hadoop-24 Sqoop迁移 MySQL到Hive 与 Hive到MySQL SQL生成数据 HDFS集群 Sqoop import jdbc ETL MapReduce
79 0
|
1月前
|
SQL 分布式计算 关系型数据库
Hadoop-23 Sqoop 数据MySQL到HDFS(部分) SQL生成数据 HDFS集群 Sqoop import jdbc ETL MapReduce
Hadoop-23 Sqoop 数据MySQL到HDFS(部分) SQL生成数据 HDFS集群 Sqoop import jdbc ETL MapReduce
35 0
|
1月前
|
SQL 分布式计算 关系型数据库
Hadoop-22 Sqoop 数据MySQL到HDFS(全量) SQL生成数据 HDFS集群 Sqoop import jdbc ETL MapReduce
Hadoop-22 Sqoop 数据MySQL到HDFS(全量) SQL生成数据 HDFS集群 Sqoop import jdbc ETL MapReduce
44 0
|
1月前
|
分布式计算 Kubernetes Hadoop
大数据-82 Spark 集群模式启动、集群架构、集群管理器 Spark的HelloWorld + Hadoop + HDFS
大数据-82 Spark 集群模式启动、集群架构、集群管理器 Spark的HelloWorld + Hadoop + HDFS
133 6
|
1月前
|
分布式计算 资源调度 Hadoop
大数据-80 Spark 简要概述 系统架构 部署模式 与Hadoop MapReduce对比
大数据-80 Spark 简要概述 系统架构 部署模式 与Hadoop MapReduce对比
62 2
|
9天前
|
存储 分布式计算 Hadoop
数据湖技术:Hadoop与Spark在大数据处理中的协同作用
【10月更文挑战第27天】在大数据时代,数据湖技术凭借其灵活性和成本效益成为企业存储和分析大规模异构数据的首选。Hadoop和Spark作为数据湖技术的核心组件,通过HDFS存储数据和Spark进行高效计算,实现了数据处理的优化。本文探讨了Hadoop与Spark的最佳实践,包括数据存储、处理、安全和可视化等方面,展示了它们在实际应用中的协同效应。
45 2
|
10天前
|
存储 分布式计算 Hadoop
数据湖技术:Hadoop与Spark在大数据处理中的协同作用
【10月更文挑战第26天】本文详细探讨了Hadoop与Spark在大数据处理中的协同作用,通过具体案例展示了两者的最佳实践。Hadoop的HDFS和MapReduce负责数据存储和预处理,确保高可靠性和容错性;Spark则凭借其高性能和丰富的API,进行深度分析和机器学习,实现高效的批处理和实时处理。
43 1
|
28天前
|
分布式计算 Hadoop 大数据
大数据体系知识学习(一):PySpark和Hadoop环境的搭建与测试
这篇文章是关于大数据体系知识学习的,主要介绍了Apache Spark的基本概念、特点、组件,以及如何安装配置Java、PySpark和Hadoop环境。文章还提供了详细的安装步骤和测试代码,帮助读者搭建和测试大数据环境。
50 1

相关实验场景

更多
下一篇
无影云桌面