协程实现单线程并发(入门)

简介: 协程实现单线程并发(入门)

协程源码:https://github.com/wuj1nquan/bitco ,每一行都有详细注释

进阶篇:

协程源码剖析进阶(一)

协程如何解决单线程并发?

首先作者尊重历史,协程的提出及最初实现者是Melvin Conway

先解释什么是协程:

协程(Coroutine)是一种计算机程序组件,它允许在特定的位置暂停执行,并在稍后恢复执行。

协程组件通常由以下几个主要部分组成:

  1. 协程对象(Coroutine Object):表示一个协程,它可以在特定的位置暂停执行,并在稍后恢复执行。协程对象通常由编程语言或框架提供的特殊语法或函数创建。
  2. 调度器(Scheduler):负责管理和调度多个协程的执行。调度器决定何时暂停一个协程并切换到另一个协程,以实现并发执行。
  3. 事件循环(Event Loop):是调度器的一种实现,它负责监控协程的状态并决定何时执行哪个协程。事件循环通常是异步编程中的核心组件,它驱动整个协程的执行过程。
  4. 协程间通信机制(Inter-coroutine Communication Mechanism):用于协程之间的通信和数据交换。这可以是通过共享变量、消息传递、管道等方式实现的。
  5. 异常处理机制(Exception Handling Mechanism):处理协程执行过程中可能出现的异常情况。异常处理机制可以捕获和处理协程中的异常,并根据需要采取适当的措施。

这些组件共同构成了协程的基本框架,使得程序员可以使用协程来编写高效、可维护的异步代码,实现并发执行和异步操作。不同的编程语言和框架可能提供不同的实现方式和特性,但通常都会包含类似的组件来支持协程。

而一个协程对象实际上就是一个支持被调度器调度的函数

本文讨论目前需要协程的原因:

在高并发的服务器请求下,我们想尽可能提高效率,当然可以通过多线程解决,但这是人傻钱多的举动,如果创建销毁一个线程只为了处理一个简单的请求,我们觉得这样很不划算,甚至是一种性能浪费。

答案:单线程处理多任务

这可能吗?单线程一次只能处理一个任务,同时处理多个任务不是并发吗,确定没搞错成多线程和多进程吗?

首先,没搞错,我们的目的是用单线程处理多任务,但不是同时,考虑操作系统是如何实现并发的,单个cpu上多个进程也不是同时运行的,而是时间分片为我们造成了多个进程同时运行的假象。

解决方案:模拟时间分片

先来看看没有协程的单线程中多任务是如何处理的(伪代码)

↓ 时间线

任务1

send(request); //客户端发送请求 1

等待服务端回复; time...

recv();//接收数据

任务2

send(request); //客户端发送请求 2

等待服务端回复; time...

recv();//接收数据

任务3

send(request); //客户端发送请求 3

等待服务端回复; time...

recv();//接收数据

重点在这里!!!

可以看到这三个请求是按顺序依次执行的,任务二需要等待任务一执行完后开始执行,然而任务一在运行时也需要等待,这样一来,不只是任务一在等待time,而是三个任务都在等待任务一的time,这时整个线程都在等待,什么都没有做!

就像你需要烧水,洗衣服,做饭。先打水、烧水然后什么也不干,等着水烧开再去洗衣服!

第二个例子我们都会解决:先烧上水,然后去开洗衣机、再去做饭,做饭时找空闲时间,每隔几分钟看看水烧开了没有,衣服洗好了没有

所以,单线程能不能也这样做呢?

答案是肯定的,我们需要在任务一等待时切换到任务二...切换回任务一... 如此一来,我们避免了大量的等待时间!

核心问题:

如何实现任务切换(调度器)?

  • 利用 glibc 的 ucontext 组件(使用起来最简单)
  • 使用汇编代码来切换上下文(效率最高)
  • 利用 C 语言的 setjmp 和 longjmp(可移植性最好)

实现任务切换

这里用ucontext举例说明(因为我不会汇编0.0)

// ucontext_t结构体 用于保存线程的执行状态(上下文)
ucontext_t ctx[3];
ucontext_t main_ctx;
int count = 0;
// coroutine 1
void func1(void) {
    while(count++ < 30) {
        printf("1\n");
        swapcontext(&ctx[0], &main_ctx);// context switch
         printf("2\n");
    }
}
// coroutine 2
void func2(void) {
    while(count++ < 30) {
        printf("3\n");
        swapcontext(&ctx[1], &main_ctx);// context switch
        printf("4\n");
    }
}
//coroutine 3
void func3(void) {
    while(count++ < 30) {
        printf("5\n");
        swapcontext(&ctx[2], &main_ctx);// context switch
        printf("6\n");
    }
}
// schedule
int main() {
    // 每个上下文的栈空间
    char stack1[STACK_SIZE] = {0};
    char stack2[STACK_SIZE] = {0};
    char stack3[STACK_SIZE] = {0};
    // getcontext初始化结构体全部属性
    getcontext(&ctx[0]);// 将当前线程的执行状态保存到ctx[0]结构体中
    // 自定义设置结构体部分属性
    ctx[0].uc_stack.ss_sp = stack1;
        ctx[0].uc_stack.ss_size = sizeof(stack1);
        ctx[0].uc_link = &main_ctx;
        makecontext(&ctx[0], func1, 0); //修改ctx[0]的上下文为func1的上下文
    getcontext(&ctx[1]);
    ctx[1].uc_stack.ss_sp = stack2;
    ctx[1].uc_stack.ss_size = sizeof(stack2);
    ctx[1].uc_link = &main_ctx;
    makecontext(&ctx[1], func2, 0);
    
    getcontext(&ctx[2]);
    ctx[2].uc_stack.ss_sp = stack3;
    ctx[2].uc_stack.ss_size = sizeof(stack3);
    ctx[2].uc_link = &main_ctx;
    makecontext(&ctx[2], func3, 0);
    printf("swapcontext\n");
    while (count <= 30) {  // scheduler
        swapcontext(&main_ctx, &ctx[count%3]);
        // 这里的main_ctx未被初始化,仅用作其他上下文之间的调度
    }
    printf("\n");
    return 0;
}

部分运行结果:

swapcontext 1 3 5 2 1 4 3 6 5 2 1 4 3 6 5 2 1

wjq++
+关注
目录
打赏
0
1
1
0
6
分享
相关文章
|
3月前
|
线程安全的艺术:确保并发程序的正确性
在多线程环境中,确保线程安全是编程中的一个核心挑战。线程安全问题可能导致数据不一致、程序崩溃甚至安全漏洞。本文将分享如何确保线程安全,探讨不同的技术策略和最佳实践。
68 6
Java多线程编程中的并发容器:深入解析与实战应用####
在本文中,我们将探讨Java多线程编程中的一个核心话题——并发容器。不同于传统单一线程环境下的数据结构,并发容器专为多线程场景设计,确保数据访问的线程安全性和高效性。我们将从基础概念出发,逐步深入到`java.util.concurrent`包下的核心并发容器实现,如`ConcurrentHashMap`、`CopyOnWriteArrayList`以及`BlockingQueue`等,通过实例代码演示其使用方法,并分析它们背后的设计原理与适用场景。无论你是Java并发编程的初学者还是希望深化理解的开发者,本文都将为你提供有价值的见解与实践指导。 --- ####
Java 多线程并发控制:深入理解与实战应用
《Java多线程并发控制:深入理解与实战应用》一书详细解析了Java多线程编程的核心概念、并发控制技术及其实战技巧,适合Java开发者深入学习和实践参考。
99 8
Java中的多线程编程:从入门到实践####
本文将深入浅出地探讨Java多线程编程的核心概念、应用场景及实践技巧。不同于传统的摘要形式,本文将以一个简短的代码示例作为开篇,直接展示多线程的魅力,随后再详细解析其背后的原理与实现方式,旨在帮助读者快速理解并掌握Java多线程编程的基本技能。 ```java // 简单的多线程示例:创建两个线程,分别打印不同的消息 public class SimpleMultithreading { public static void main(String[] args) { Thread thread1 = new Thread(() -> System.out.prin
Java中的多线程编程:并发与并行的深度解析####
在当今软件开发领域,多线程编程已成为提升应用性能、响应速度及资源利用率的关键手段之一。本文将深入探讨Java平台上的多线程机制,从基础概念到高级应用,全面解析并发与并行编程的核心理念、实现方式及其在实际项目中的应用策略。不同于常规摘要的简洁概述,本文旨在通过详尽的技术剖析,为读者构建一个系统化的多线程知识框架,辅以生动实例,让抽象概念具体化,复杂问题简单化。 ####
|
3月前
|
Java中的多线程编程入门
【10月更文挑战第29天】在Java的世界中,多线程就像是一场精心编排的交响乐。每个线程都是乐团中的一个乐手,他们各自演奏着自己的部分,却又和谐地共同完成整场演出。本文将带你走进Java多线程的世界,让你从零基础到能够编写基本的多线程程序。
48 1
Java多线程编程的艺术:从入门到精通####
【10月更文挑战第21天】 本文将深入探讨Java多线程编程的核心概念,通过生动实例和实用技巧,引导读者从基础认知迈向高效并发编程的殿堂。我们将一起揭开线程管理的神秘面纱,掌握同步机制的精髓,并学习如何在实际项目中灵活运用这些知识,以提升应用性能与响应速度。 ####
63 3
List并发线程安全问题
【10月更文挑战第21天】`List` 并发线程安全问题是多线程编程中一个非常重要的问题,需要我们认真对待和处理。只有通过不断地学习和实践,我们才能更好地掌握多线程编程的技巧和方法,提高程序的性能和稳定性。
278 59
Java中的多线程编程:从入门到精通
本文将带你深入了解Java中的多线程编程。我们将从基础概念开始,逐步深入探讨线程的创建、启动、同步和通信等关键知识点。通过阅读本文,你将能够掌握Java多线程编程的基本技能,为进一步学习和应用打下坚实的基础。
Python中的多线程编程:从入门到精通
本文将深入探讨Python中的多线程编程,包括其基本原理、应用场景、实现方法以及常见问题和解决方案。通过本文的学习,读者将对Python多线程编程有一个全面的认识,能够在实际项目中灵活运用。
AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等