梯度提升框架

简介: 梯度提升框架

XGBoosteXtreme Gradient Boosting)是一个高效且灵活的梯度提升框架,广泛应用于机器学习竞赛和实际项目中。接下来,我将详细介绍XGBoost的原理。

 

1. 梯度提升决策树(GBDT

 

为了理解XGBoost,首先需要了解梯度提升决策树(GBDT)。

 

1.1 GBDT简介

GBDT是一种集成学习方法,它通过构建一系列的决策树,将多个弱学习器(通常是决策树)组合成一个强学习器。每棵树都是在前一棵树的基础上,通过对损失函数的负梯度进行拟合来构建的。

 

1.2 GBDT算法流程

1. 初始化模型为常数值。

2. 对于每一轮(即每棵树):

  1.计算当前模型的残差(即负梯度)。

  2.使用残差训练一个新的决策树。

  3.更新模型,在现有模型的基础上加上新树的预测结果。

 

2. XGBoost的增强

 

XGBoost是在GBDT基础上进行了许多增强和优化,主要包括以下几个方面:

 

2.1 正则化

XGBoost引入了二阶导数的信息,并增加了正则化项,从而控制模型的复杂度,防止过拟合。损失函数包括数据部分和正则化部分:

 

L(θ)=∑i=1nl(yi,y^i)+∑k=1KΩ(fk)

L(\theta) = \sum_{i=1}^n l(y_i, \hat{y}_i) + \sum_{k=1}^K \Omega(f_k)

 

其中,Ω(fk)\Omega(f_k) 是正则化项,通常由树的复杂度表示,例如叶节点数、叶节点权重等。

 

2.2 二阶导数优化

XGBoost使用泰勒展开式到二阶项,优化目标函数。对于每一棵树,目标函数可以表示为:

 

obj=∑i=1n[gift(xi)+12hift(xi)2]+Ω(ft)

\text{obj} = \sum_{i=1}^n [g_i f_t(x_i) + \frac{1}{2} h_i f_t(x_i)^2] + \Omega(f_t)

 

其中 gi g_i   hi h_i  分别是损失函数的一阶和二阶导数。

 

2.3 树结构

XGBoost使用贪心算法来构建树,每次尝试所有可能的分裂点,选择能使目标函数下降最多的分裂点。

 

2.4 缺失值处理

XGBoost自动处理缺失值,在遇到缺失值时,它会同时考虑将缺失值划分到左子树和右子树,然后选择最优的划分方式。

 

2.5 并行化

XGBoost通过列块(column block)来实现特征并行计算,大大提高了训练速度。

 

3. 重要参数

 

XGBoost有许多超参数,可以调整以优化模型性能。以下是一些重要的参数:

 

- `n_estimators`:树的数量。

- `max_depth`:树的最大深度。

- `eta`(或 `learning_rate`):学习率,用于缩小每棵树的贡献。

- `subsample`:每棵树的样本比例。

- `colsample_bytree`:每棵树的特征采样比例。

- `lambda` `alpha`L2 L1 正则化项的权重。

 

4. 算法实现

 

下面是一个简单的Python示例,使用XGBoost进行分类任务:

 

```python
import xgboost as xgb
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score
 
# 加载数据
iris = load_iris()
X, y = iris.data, iris.target
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
 
# 转换为DMatrix格式
train_dmatrix = xgb.DMatrix(data=X_train, label=y_train)
test_dmatrix = xgb.DMatrix(data=X_test, label=y_test)
 
# 设置参数
params = {
   'objective': 'multi:softprob',
   'num_class': 3,
   'max_depth': 3,
   'eta': 0.1,
   'subsample': 0.8,
   'colsample_bytree': 0.8,
   'seed': 42
}
 
# 训练模型
num_rounds = 100
bst = xgb.train(params, train_dmatrix, num_rounds)
 
# 预测
preds = bst.predict(test_dmatrix)
best_preds = np.asarray([np.argmax(line) for line in preds])
 
# 评估
accuracy = accuracy_score(y_test, best_preds)
print(f"Accuracy: {accuracy}")
 
```


5. 总结

 

XGBoost通过引入正则化、利用二阶导数、并行化处理等技术,对传统的GBDT进行了增强,使其在处理大规模数据集时表现出色。理解XGBoost的原理和实现细节,有助于更好地调优模型,提升性能。

目录
相关文章
|
7月前
|
机器学习/深度学习 算法 Serverless
大模型开发:描述损失函数的作用以及一些常见的损失函数。
损失函数在机器学习中至关重要,用于衡量预测误差、优化模型、评估性能及选择模型。常见类型包括均方误差(MSE)、均方根误差(RMSE)、交叉熵损失(适用于分类)、绝对误差(MAE)、hinge损失(SVMs)、0-1损失、对数似然损失和Focal Loss(应对类别不平衡)。选择时要考虑模型性质、数据特征和优化需求。
522 3
|
22天前
|
机器学习/深度学习 缓存 算法
《C++ 与神经网络:自动微分在反向传播中的高效实现之道》
在深度学习领域,神经网络的核心驱动力依赖于高效的反向传播算法,而自动微分技术是其实现的关键。尤其在C++环境中,面对内存管理和性能优化的挑战,通过计算图、对象池、多线程等技术实现高效自动微分,支持神经网络的训练,对促进AI技术的发展具有重要意义。
|
4月前
|
机器学习/深度学习 PyTorch 算法框架/工具
PyTorch中的自动微分机制:深入理解反向传播
【8月更文第27天】PyTorch 是一个强大的机器学习框架,它因其灵活性和易用性而受到广泛欢迎。其中一个关键特性就是它的自动微分机制,这个机制使得 PyTorch 能够自动计算任何张量操作的梯度,这对于训练深度学习模型至关重要。本文将详细介绍 PyTorch 中自动微分机制的工作原理,并通过具体的代码示例来展示如何使用这一机制来实现反向传播。
305 1
|
6月前
|
机器学习/深度学习 算法
**反向传播算法**在多层神经网络训练中至关重要,它包括**前向传播**、**计算损失**、**反向传播误差**和**权重更新**。
【6月更文挑战第28天】**反向传播算法**在多层神经网络训练中至关重要,它包括**前向传播**、**计算损失**、**反向传播误差**和**权重更新**。数据从输入层流经隐藏层到输出层,计算预测值。接着,比较预测与真实值计算损失。然后,从输出层开始,利用链式法则反向计算误差和梯度,更新权重以减小损失。此过程迭代进行,直到损失收敛或达到训练次数,优化模型性能。反向传播实现了自动微分,使模型能适应训练数据并泛化到新数据。
75 2
|
7月前
|
机器学习/深度学习
【一起撸个DL框架】4 反向传播求梯度
4 反向传播求梯度🥥 4.1 简介 上一篇:【一起撸个DL框架】3 前向传播 前面我们已经介绍了前向传播,而本节即将介绍的反向传播中的自动微分机制,可以说是深度学习框架的一个核心功能。因为计算图中的参数正是按照着梯度的指引来更新的。
68 0
|
7月前
|
机器学习/深度学习 算法 PyTorch
深入理解PyTorch自动微分:反向传播原理与实现
【4月更文挑战第17天】本文深入解析PyTorch的自动微分机制,重点讨论反向传播的原理和实现。反向传播利用链式法则计算神经网络的梯度,包括前向传播、梯度计算、反向传播及参数更新。PyTorch通过`autograd`模块实现自动微分,使用`Tensor`和计算图记录操作历史以自动计算梯度。通过示例展示了如何在PyTorch中创建张量、定义计算过程及求梯度。掌握这些有助于提升深度学习模型的训练效率。
|
7月前
|
机器学习/深度学习 算法
反向传播原理的梯度下降算法
反向传播原理的梯度下降算法
|
7月前
|
机器学习/深度学习 PyTorch 算法框架/工具
基于PyTorch实战权重衰减——L2范数正则化方法(附代码)
基于PyTorch实战权重衰减——L2范数正则化方法(附代码)
449 0
|
7月前
|
机器学习/深度学习 算法 关系型数据库
反向传播原理的反向传播算法
反向传播原理的反向传播算法
|
7月前
|
机器学习/深度学习 算法 Python
反向传播原理的链式法则
反向传播原理的链式法则
下一篇
DataWorks