GitHub高赞!Python零基础也能搞定的数据分析与处理

简介: 经常会有人让我推荐一些 Python 入门教程。虽然 Python 入内教程到处都有,但是这些教程要么太宽泛(没有讲任何关于数据分析的内容),要么太专业(全是关于科学原理的内容)。然而Excel用户往往处在一个中间位置:他们的确是和数据打交道,但是科学原理对于他们来说可能又太专业了。他们常常有一些现有教程无法满足的特殊需求,举例如下• 为完成某个任务,我应该用哪个 Python-Excel包?• 我如何将 Power Query 数据库连接迁移到 Python?• Excel中的 AutoFilter和数据透视表在 Python 中对应的是什么?

经常会有人让我推荐一些 Python 入门教程。虽然 Python 入内教程到处都有,但是这些教程要么太宽泛(没有讲任何关于数据分析的内容),要么太专业(全是关于科学原理的内容)。然而Excel用户往往处在一个中间位置:他们的确是和数据打交道,但是科学原理对于他们来说可能又太专业了。他们常常有一些现有教程无法满足的特殊需求,举例如下

  • 为完成某个任务,我应该用哪个 Python-Excel包?
  • 我如何将 Power Query 数据库连接迁移到 Python?
  • Excel中的 AutoFilter和数据透视表在 Python 中对应的是什么?


今天给小伙伴们分享的这份手册,就是让你从对 Python 一无所知的同时,能够灵活运用Python 的数据分析和科学计算工具。

限于文章篇幅原因,只能以截图的形式展示出来,有需要的小伙伴可以  点击这里获取!

第一部分 Python 入门

第1章 为什么要用 Python 为 Excel 编程

第2章 开发环境

第3章 Python 入门

第二部分 pandas 入门

第4章 NumPy 基础

第5章 使用 pandas 进行数据分析

第6章 使用 pandas 进行时序分析

第三部分 在 Excel 之外读写 Excel 文件

第7章 使用 pandas 操作 Excel 文件

第8章 使用读写包操作 Excel 文件

第四部分 使用 xlwings 对 Excel 应用程序进行编程

第9章 Excel 自动化

第10章 Python 驱动的 Excel 工具

第11章 Python 包追踪器

第12章 用户定义函数


限于文章篇幅原因,就展示到这里了,有需要的小伙伴可以  点击这里获取!

相关文章
|
9天前
|
机器学习/深度学习 监控 算法
Python数据分析与机器学习在金融风控中的应用
Python数据分析与机器学习在金融风控中的应用
37 12
|
6天前
|
机器学习/深度学习 数据采集 数据挖掘
解锁 Python 数据分析新境界:Pandas 与 NumPy 高级技巧深度剖析
【7月更文挑战第12天】Python的Pandas和NumPy库助力高效数据处理。Pandas用于数据清洗,如填充缺失值和转换类型;NumPy则擅长数组运算,如元素级加法和矩阵乘法。结合两者,可做复杂数据分析和特征工程,如产品平均销售额计算及销售额标准化。Pandas的时间序列功能,如移动平均计算,进一步增强分析能力。掌握这两者高级技巧,能提升数据分析质量和效率。
19 4
爆赞!GitHub首本Python开发实战背记手册,标星果然百万名不虚传
Python (发音:[ 'paiθ(ə) n; (US) 'paiθɔn ] n. 蟒蛇,巨蛇 ),是一种面向对象的解释性的计算机程序设计语言,也是一种功能强大而完善的通用型语言,已经具有十多年的发展历史,成熟且稳定。Python 具有脚本语言中最丰富和强大的类库,足以支持绝大多数日常应用。 Python 语言的特点:
|
7天前
|
机器学习/深度学习 存储 数据可视化
这份Excel+Python飞速搞定数据分析手册,简直可以让Excel飞起来
微软在 UserVoice 上运营着⼀个反馈论坛,每个⼈都可以在这⾥提交新点⼦供他⼈投票。票数最⾼的功能请求是“将 Python 作为Excel 的⼀门脚本语⾔”,其得票数差不多是第⼆名的两倍。尽管⾃2015 年这个点⼦发布以来并没有什么实质性进展,但在 2020 年年末,Python 之⽗ Guido van Rossum 发布推⽂称“退休太无聊了”,他将会加入微软。此事令 Excel ⽤户重燃希望。我不知道他的举动是否影响了 Excel 和 Python 的集成,但我清楚的是,为何⼈们迫切需要结合 Excel 和 Python 的⼒量,⽽你⼜应当如何从今天开始将两者结合起来。总之,这就是本
|
7天前
|
人工智能 数据挖掘 大数据
爆赞!GitHub首本标星120K的Python程序设计人工智能案例手册
为什么要学习Python? Python简单易学,且提供了丰富的第三方库,可以用较少的代码完成较多的工作,使开发者能够专注于如何解决问题而只花较少的时间去考虑如何编程。此外,Python还具有免费开源、跨平台、面向对象、胶水语言等优点,在系统编程、图形界面开发、科学计算、Web开发、数据分析、人工智能等方面有广泛应用。尤其是在数据分析和人工智能方面,Python已成为最受开发者欢迎的编程语言之一,不仅大量计算机专业人员选择使用Python进行快速开发,许多非计算机专业人员也纷纷选择Python语言来解决专业问题。 由于Python应用广泛,关于Python的参考书目前已经有很多,但将Pytho
|
9天前
|
数据采集 机器学习/深度学习 数据挖掘
Python基于波动率模型(ARCH和GARCH)进行股票数据分析项目实战
Python基于波动率模型(ARCH和GARCH)进行股票数据分析项目实战
|
8天前
|
分布式计算 数据可视化 大数据
阿里云大牛熬夜整理的Python大数据小抄,GitHub星标125K!
Python 是一种流行的编程语言,在大数据领域有广泛的应用。Python 拥有丰富的库和工具,可用于数据处理、分析和可视化。 在大数据处理方面,Python 可以与 Hadoop、Spark 等大数据框架集成,实现大规模数据的处理和分析。它也适用于数据清洗、数据转换、数据挖掘等任务。 此外,Python 的数据分析库如 Pandas、NumPy 和 Matplotlib 等,提供了强大的数据处理和可视化功能,使得数据分析变得更加简单和高效。
|
3天前
|
JSON 数据挖掘 API
在会议系统工程中,Python可以用于多种任务,如网络请求(用于视频会议的连接和会议数据的传输)、数据分析(用于分析会议参与者的行为或会议效果)等。
在会议系统工程中,Python可以用于多种任务,如网络请求(用于视频会议的连接和会议数据的传输)、数据分析(用于分析会议参与者的行为或会议效果)等。
|
4天前
|
数据采集 数据挖掘 数据处理
Python数据分析加速器:深度挖掘Pandas与NumPy的高级功能
【7月更文挑战第14天】Python的Pandas和NumPy库是数据分析的核心工具。Pandas以其高效的数据处理能力,如分组操作和自定义函数应用,简化了数据清洗和转换。NumPy则以其多维数组和广播机制实现快速数值计算。两者协同工作,如在DataFrame与NumPy数组间转换进行预处理,提升了数据分析的效率和精度。掌握这两者的高级功能是提升数据科学技能的关键。**
11 0
|
6天前
|
数据挖掘 数据处理 决策智能
Python 数据分析工具箱:深挖 Pandas 与 NumPy 高级功能,驱动智能决策
【7月更文挑战第12天】Python的Pandas和NumPy是数据分析的基石。Pandas提供灵活的数据结构如DataFrame,用于高效处理关系型数据,而NumPy则以多维数组和科学计算功能著称。两者结合,支持数据合并(如`pd.merge`)、时间序列分析(`pd.to_datetime`)和高级数组运算。通过掌握它们的高级特性,能提升数据分析效率,应用于各领域,如金融风险评估、市场分析和医疗预测,助力数据驱动的决策。学习和熟练运用Pandas与NumPy是成为出色数据分析师的关键。