实时计算 Flink版产品使用问题之通过设置什么可以自动清理旧的checkpoint数据

简介: 实时计算Flink版作为一种强大的流处理和批处理统一的计算框架,广泛应用于各种需要实时数据处理和分析的场景。实时计算Flink版通常结合SQL接口、DataStream API、以及与上下游数据源和存储系统的丰富连接器,提供了一套全面的解决方案,以应对各种实时计算需求。其低延迟、高吞吐、容错性强的特点,使其成为众多企业和组织实时数据处理首选的技术平台。以下是实时计算Flink版的一些典型使用合集。

问题一:Flink CDC中operator如何设置自动清理旧的checkpoint数据呢?

Flink CDC中operator如何设置自动清理旧的checkpoint数据呢?因为我的sql融合了很多表状态数据很大,但是看checkpoints有很多旧的,如何配置flink operator自动清理呢?streampark好用吗?感觉国内主导的很难稳定



参考答案:

在Apache Flink中,包括Flink CDC应用在内的所有作业的checkpoint清理策略是通过Flink集群级别的配置来管理的。要设置自动清理旧的checkpoint数据,可以编辑Flink的全局配置文件(通常是flink-conf.yaml),调整以下配置项:

# 设置保留的checkpoint个数,仅保留最新的几个checkpoint
state.checkpoints.num-retained: 3

上述配置意味着Flink会自动保留最近的3个checkpoint,并在创建新checkpoint时删除旧的checkpoint。

对于状态数据非常大的情况,确保合理的checkpoint保留策略和定期清理是非常重要的,以避免存储空间被过度占用。



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/601429



问题二:Flink CDC有个消费kafka的问题很困惑,一秒钟16000条数据,flink就消费,没计算?

Flink CDC有个消费kafka的问题很困惑,一秒钟16000条数据,flink就消费,没计算,延迟能到半小时,测试环境非常差,数据比这多都没什么延迟?



参考答案:

在Flink CDC中,如果仅消费Kafka中的数据且没有复杂的计算逻辑,理论上延迟不应该很高。您提到的测试环境中数据量更大却没有明显延迟,但在另一个环境中却出现了严重延迟,这可能与以下几个因素有关:

1. 资源限制:

CPU: 如果生产环境的CPU资源紧张或分配不足,可能会导致Flink TaskManager无法及时处理数据,进而产生延迟。

内存:任务运行时所需的内存量也可能影响性能,特别是如果Flink作业的状态空间较大或者中间结果需要缓存时。

2. 并发度设置:

Flink任务的并行度可能未根据实际硬件资源进行合理调整,导致消费速度跟不上数据产生的速度。

3. 网络问题:

生产环境中的网络带宽、延迟等可能成为瓶颈,尤其是在从Kafka集群读取和向下游系统写入时。

4. Kafka配置:

Kafka消费者参数(如fetch.min.bytes、fetch.max.bytes、max.poll.records等)配置不当,可能导致Flink从Kafka获取数据的效率低下。

5. 反压机制:

若下游存储系统的写入速度慢于Flink处理速度,可能出现反压现象,即下游系统给上游Flink任务施加压力,使得Flink降低消费速度以适应下游系统的处理能力。

6. checkpoint配置:

Checkpoint间隔过长或者执行过程中占用大量资源,可能影响正常的数据处理流程。

7. 外部依赖:

如您的描述中提到的“没计算”,若后续环节有数据库写入操作,那么目标数据库的性能和并发写入能力可能对Flink的吞吐造成影响。

要解决这种高延迟问题,可以从以下几个方面着手排查优化:

确保生产环境的硬件资源充足,适当调优TaskManager的配置(如taskmanager.numberOfTaskSlots、内存大小等)。

调整Flink作业的并行度以匹配实际数据规模和硬件资源。

检查并优化Kafka消费者配置,确保其能高效地从Kafka topic中拉取消息。

分析是否存在反压情况,可以观察Flink的监控指标以及Kafka的offset提交情况。

优化下游系统的处理能力,比如如果是数据库写入慢,检查SQL执行计划、索引是否合适、数据库参数配置等。

根据实际情况调整checkpoint策略,确保它既能保证数据一致性又能避免过度影响实时性。

通过上述步骤分析和优化后,通常能够显著改善Flink CDC在消费Kafka数据时的延迟问题。



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/601426



问题三:Flink CDC中kafka设置的5分区 我们cdc的正常速度大概多少呀?

Flink CDC中kafka设置的5分区 现在kafka设置的是10分区 两种速度都区别不大 算子连拆开的话是不是还有额外的重分区开销,网络带宽是100m的 电脑内存20核64g 想着模拟下性能 我们cdc的正常速度大概多少呀?



参考答案:

Flink CDC的速度取决于多个因素,包括源数据库的数据更新速率、Kafka集群的性能、Flink作业的并行度、网络状况以及硬件配置等。对于您的配置(20核64G,100M网络带宽),无法直接给出一个具体的CDC速度数值,需要根据实际场景测试得出。增加Kafka分区数理论上可以提高并行处理能力,但若Flink作业的并行度未相应调整或数据分布不均匀,可能并不能明显提升性能,且可能导致额外的重分区开销。



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/601420



问题四:Flink CDC这个速度貌似很慢 是哪里的使用不对么 ?

Flink CDC在windows idea里面跑的mysql cdc全量初始化 这个速度貌似很慢 是哪里的使用不对么 ?



参考答案:

把算子链拆一下看下,因为你是本地idea,可以考虑网络传输的问题



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/601419



问题五:Flink CDC中debezium源码中哪个地方会注册schema registry?

Flink CDC中debezium源码中哪个地方会注册schema registry? 一直没找到



参考答案:

Debezium在Flink CDC中并未直接注册Schema Registry,它主要用于捕获MySQL等数据库变更事件并生成JSON格式的消息,而Schema Registry一般与Kafka配合使用来管理序列化/反序列化的Avro schema。如果您希望将Debezium生成的JSON消息与Schema Registry结合使用,通常是在Kafka生产者或消费者端进行Schema的注册和管理。



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/601418

相关实践学习
基于Hologres+Flink搭建GitHub实时数据大屏
通过使用Flink、Hologres构建实时数仓,并通过Hologres对接BI分析工具(以DataV为例),实现海量数据实时分析.
实时计算 Flink 实战课程
如何使用实时计算 Flink 搞定数据处理难题?实时计算 Flink 极客训练营产品、技术专家齐上阵,从开源 Flink功能介绍到实时计算 Flink 优势详解,现场实操,5天即可上手! 欢迎开通实时计算 Flink 版: https://cn.aliyun.com/product/bigdata/sc Flink Forward Asia 介绍: Flink Forward 是由 Apache 官方授权,Apache Flink Community China 支持的会议,通过参会不仅可以了解到 Flink 社区的最新动态和发展计划,还可以了解到国内外一线大厂围绕 Flink 生态的生产实践经验,是 Flink 开发者和使用者不可错过的盛会。 去年经过品牌升级后的 Flink Forward Asia 吸引了超过2000人线下参与,一举成为国内最大的 Apache 顶级项目会议。结合2020年的特殊情况,Flink Forward Asia 2020 将在12月26日以线上峰会的形式与大家见面。
相关文章
|
5月前
|
存储 分布式计算 数据处理
「48小时极速反馈」阿里云实时计算Flink广招天下英雄
阿里云实时计算Flink团队,全球领先的流计算引擎缔造者,支撑双11万亿级数据处理,推动Apache Flink技术发展。现招募Flink执行引擎、存储引擎、数据通道、平台管控及产品经理人才,地点覆盖北京、杭州、上海。技术深度参与开源核心,打造企业级实时计算解决方案,助力全球企业实现毫秒洞察。
602 0
「48小时极速反馈」阿里云实时计算Flink广招天下英雄
|
存储 分布式计算 流计算
实时计算 Flash – 兼容 Flink 的新一代向量化流计算引擎
本文介绍了阿里云开源大数据团队在实时计算领域的最新成果——向量化流计算引擎Flash。文章主要内容包括:Apache Flink 成为业界流计算标准、Flash 核心技术解读、性能测试数据以及在阿里巴巴集团的落地效果。Flash 是一款完全兼容 Apache Flink 的新一代流计算引擎,通过向量化技术和 C++ 实现,大幅提升了性能和成本效益。
4011 74
实时计算 Flash – 兼容 Flink 的新一代向量化流计算引擎
zdl
|
消息中间件 运维 大数据
大数据实时计算产品的对比测评:实时计算Flink版 VS 自建Flink集群
本文介绍了实时计算Flink版与自建Flink集群的对比,涵盖部署成本、性能表现、易用性和企业级能力等方面。实时计算Flink版作为全托管服务,显著降低了运维成本,提供了强大的集成能力和弹性扩展,特别适合中小型团队和业务波动大的场景。文中还提出了改进建议,并探讨了与其他产品的联动可能性。总结指出,实时计算Flink版在简化运维、降低成本和提升易用性方面表现出色,是大数据实时计算的优选方案。
zdl
619 56
|
存储 监控 算法
Flink 四大基石之 Checkpoint 使用详解
Flink 的 Checkpoint 机制通过定期插入 Barrier 将数据流切分并进行快照,确保故障时能从最近的 Checkpoint 恢复,保障数据一致性。Checkpoint 分为精确一次和至少一次两种语义,前者确保每个数据仅处理一次,后者允许重复处理但不会丢失数据。此外,Flink 提供多种重启策略,如固定延迟、失败率和无重启策略,以应对不同场景。SavePoint 是手动触发的 Checkpoint,用于作业升级和迁移。Checkpoint 执行流程包括 Barrier 注入、算子状态快照、Barrier 对齐和完成 Checkpoint。
2554 20
|
消息中间件 关系型数据库 MySQL
Flink CDC 在阿里云实时计算Flink版的云上实践
本文整理自阿里云高级开发工程师阮航在Flink Forward Asia 2024的分享,重点介绍了Flink CDC与实时计算Flink的集成、CDC YAML的核心功能及应用场景。主要内容包括:Flink CDC的发展及其在流批数据处理中的作用;CDC YAML支持的同步链路、Transform和Route功能、丰富的监控指标;典型应用场景如整库同步、Binlog原始数据同步、分库分表同步等;并通过两个Demo展示了MySQL整库同步到Paimon和Binlog同步到Kafka的过程。最后,介绍了未来规划,如脏数据处理、数据限流及扩展数据源支持。
804 0
Flink CDC 在阿里云实时计算Flink版的云上实践
|
存储 关系型数据库 BI
实时计算UniFlow:Flink+Paimon构建流批一体实时湖仓
实时计算架构中,传统湖仓架构在数据流量管控和应用场景支持上表现良好,但在实际运营中常忽略细节,导致新问题。为解决这些问题,提出了流批一体的实时计算湖仓架构——UniFlow。该架构通过统一的流批计算引擎、存储格式(如Paimon)和Flink CDC工具,简化开发流程,降低成本,并确保数据一致性和实时性。UniFlow还引入了Flink Materialized Table,实现了声明式ETL,优化了调度和执行模式,使用户能灵活调整新鲜度与成本。最终,UniFlow不仅提高了开发和运维效率,还提供了更实时的数据支持,满足业务决策需求。
|
SQL 运维 数据可视化
阿里云实时计算Flink版产品体验测评
阿里云实时计算Flink基于Apache Flink构建,提供一站式实时大数据分析平台,支持端到端亚秒级实时数据分析,适用于实时大屏、实时报表、实时ETL和风控监测等场景,具备高性价比、开发效率、运维管理和企业安全等优势。
|
数据可视化 大数据 数据处理
评测报告:实时计算Flink版产品体验
实时计算Flink版提供了丰富的文档和产品引导,帮助初学者快速上手。其强大的实时数据处理能力和多数据源支持,满足了大部分业务需求。但在高级功能、性能优化和用户界面方面仍有改进空间。建议增加更多自定义处理函数、数据可视化工具,并优化用户界面,增强社区互动,以提升整体用户体验和竞争力。
205 2
|
运维 搜索推荐 数据安全/隐私保护
阿里云实时计算Flink版测评报告
阿里云实时计算Flink版在用户行为分析与标签画像场景中表现出色,通过实时处理电商平台用户行为数据,生成用户兴趣偏好和标签,提升推荐系统效率。该服务具备高稳定性、低延迟、高吞吐量,支持按需计费,显著降低运维成本,提高开发效率。
344 1

相关产品

  • 实时计算 Flink版