使用Blink CEP实现差值聚合计算

本文涉及的产品
实时计算 Flink 版,5000CU*H 3个月
简介: 本文介绍通过CEP实现实时流上的差值聚合计算。

使用Blink SQL+UDAF实现差值聚合计算介绍了如何使用Blink SQL+UDAF实现实时流上的差值聚合计算,后来在与@付典就业务需求和具体实现方式进行探讨时,付典提出通过CEP实现的思路和方法。
本文介绍通过CEP实现实时流上的差值聚合计算。
感谢@付典在实现过程中的指导。笔者水平有限,若有纰漏,请批评指出。

一、客户需求

电网公司每天采集各个用户的电表数据(格式如下表),其中data_date为电表数据上报时间,cons_id为电表id,r1为电表度数,其他字段与计算逻辑无关,可忽略。为了后续演示方便,仅输入cons_id=100000002的数据。

no(string) data_date(string) cons_id(string) org_no(string) r1(double)
101 20190716 100000002 35401 13.76
101 20190717 100000002 35401 14.12
101 20190718 100000002 35401 16.59
101 20190719 100000002 35401 18.89

表1:输入数据
电网公司希望通过实时计算(Blink)对电表数据处理后,每天得到每个电表最近两天(当天和前一天)的差值数据,结果类似如下表:

cons_id(string) data_date(string) subDegreeR1(double)
100000002 20190717 0.36
100000002 20190718 2.47
100000002 20190719 2.3

表2:期望的输出数据

二、需求分析

根据业务需求以及CEP跨事件模式匹配的特性,定义两个CEP事件e1和e2,输出e2.r1-e1.r1即可得到差值。

三、CEP开发及测试结果

参考复杂事件处理(CEP)语句,CEP代码如下:

CREATE TABLE input_dh_e_mp_read_curve (
    `no`                  VARCHAR,
    data_date             VARCHAR,
    cons_id               VARCHAR,
    org_no                VARCHAR,
    r1                    DOUBLE,
    ts as TO_TIMESTAMP(concat(data_date,'000000'),'yyyyMMddHHmmss')
    ,WATERMARK wk FOR ts as withOffset(ts, 2000)
) WITH (
    type = 'datahub',
    endPoint = 'http://dh-cn-shanghai.aliyun-inc.com',
    roleArn='acs:ram::XXX:role/aliyunstreamdefaultrole',
    project = 'jszc_datahub',
    topic = 'input_dh_e_mp_read_curve'
);

CREATE TABLE data_out(
    cons_id varchar
    ,data_date varchar
    ,subDegreeR1 DOUBLE
)with(
    type = 'print'
);

insert into data_out
select
    cons_id,
    data_date,
    subDegreeR1
from input_dh_e_mp_read_curve
MATCH_RECOGNIZE(
    PARTITION BY cons_id
    ORDER BY ts
    MEASURES
        e2.data_date as data_date,
        e2.r1 - e1.r1 as subDegreeR1
    ONE ROW PER MATCH
    AFTER MATCH SKIP TO NEXT ROW
    PATTERN(e1 e2)
    DEFINE
        e1 as TRUE,
        e2 as TRUE
);

由于使用了print connector,从对应的sink的taskmanager.out日志中可以查看到输出如下:

task-1> (+)100000002,20190717,0.35999999999999943
task-1> (+)100000002,20190718,2.4700000000000006

对比期望输出(表2),20190717和20190718两个窗口的数据均正确,表明业务逻辑正确,但此输出与期望输出有少许差异:
(1)20190719的数据没有输出,这是因为我们设置了watermark,测试环境下20190719之后没有数据进来触发20190719对应的窗口的结束。

四、其他说明

1、对比使用Blink SQL+UDAF实现差值聚合计算(1),我们可以看出使用CEP开发代码非常简洁,所以在跨事件处理的情况下CEP还是非常的合适。从另外一个方面讲,同样的需求有不同的实现方式,所以融会贯通Blink SQL中的各种语法,利用更合适的语法来实现业务需求,将可能大大提升工作效率和业务性能。
2、在实现本案例时,笔者发现使用CEP时有如下需要注意的地方:
(1)partiton by里的字段(如本案的cons_id),默认会带到输出里,若同时在MEASURES中定义,则可能会报类似如下错误:
13_47_33__08_03_2019.jpg
(2)define及其内容必须定义,否则前端页面提示类似如下错误:
图片.png

图片.png

相关实践学习
基于Hologres轻松玩转一站式实时仓库
本场景介绍如何利用阿里云MaxCompute、实时计算Flink和交互式分析服务Hologres开发离线、实时数据融合分析的数据大屏应用。
Linux入门到精通
本套课程是从入门开始的Linux学习课程,适合初学者阅读。由浅入深案例丰富,通俗易懂。主要涉及基础的系统操作以及工作中常用的各种服务软件的应用、部署和优化。即使是零基础的学员,只要能够坚持把所有章节都学完,也一定会受益匪浅。
相关文章
|
5天前
|
消息中间件 Kafka 数据库
实时计算 Flink版产品使用问题之如何对CDC数据进行窗口分组和聚合操作
实时计算Flink版作为一种强大的流处理和批处理统一的计算框架,广泛应用于各种需要实时数据处理和分析的场景。实时计算Flink版通常结合SQL接口、DataStream API、以及与上下游数据源和存储系统的丰富连接器,提供了一套全面的解决方案,以应对各种实时计算需求。其低延迟、高吞吐、容错性强的特点,使其成为众多企业和组织实时数据处理首选的技术平台。以下是实时计算Flink版的一些典型使用合集。
|
1月前
|
SQL 关系型数据库 MySQL
实时计算 Flink版产品使用问题之在进行DWS层的实时聚合计算时,遇到多次更新同一个字段的情况,该如何处理
实时计算Flink版作为一种强大的流处理和批处理统一的计算框架,广泛应用于各种需要实时数据处理和分析的场景。实时计算Flink版通常结合SQL接口、DataStream API、以及与上下游数据源和存储系统的丰富连接器,提供了一套全面的解决方案,以应对各种实时计算需求。其低延迟、高吞吐、容错性强的特点,使其成为众多企业和组织实时数据处理首选的技术平台。以下是实时计算Flink版的一些典型使用合集。
|
2月前
|
数据处理 Apache 流计算
Flink Watermark和时间语义
Flink Watermark和时间语义
|
2月前
|
负载均衡 算法 大数据
[flink 实时流基础] 转换算子
[flink 实时流基础] 转换算子
|
2月前
|
消息中间件 网络协议 大数据
[flink 实时流基础]源算子和转换算子
[flink 实时流基础]源算子和转换算子
|
2月前
|
流计算
Flink CDC里假设我做widow计算使用ProcessTime计算
【1月更文挑战第23天】【1月更文挑战第113篇】Flink CDC里假设我做widow计算使用ProcessTime计算
208 45
|
2月前
|
定位技术 流计算
在Flink CEP中,可以通过定义带有时间约束的模式来匹配事件的持续时间
【2月更文挑战第12天】在Flink CEP中,可以通过定义带有时间约束的模式来匹配事件的持续时间
58 3
|
2月前
|
运维 监控 数据处理
【天衍系列 03】深入理解Flink的Watermark:实时流处理的时间概念与乱序处理
【天衍系列 03】深入理解Flink的Watermark:实时流处理的时间概念与乱序处理
103 5
|
2月前
|
存储 SQL 算法
flink cdc 算法问题之low hign点位有重叠如何解决
Flink CDC(Change Data Capture)是一个基于Apache Flink的实时数据变更捕获库,用于实现数据库的实时同步和变更流的处理;在本汇总中,我们组织了关于Flink CDC产品在实践中用户经常提出的问题及其解答,目的是辅助用户更好地理解和应用这一技术,优化实时数据处理流程。
|
2月前
|
消息中间件 Kafka 程序员
Flink(九)【时间语义与水位线】
Flink(九)【时间语义与水位线】

热门文章

最新文章