基于YOLOv8深度学习的人脸面部表情识别系统【python源码+Pyqt5界面+数据集+训练代码】深度学习实战

简介: 基于YOLOv8深度学习的人脸面部表情识别系统【python源码+Pyqt5界面+数据集+训练代码】深度学习实战

前言

人脸面部表情识别在多个领域中都扮演着重要的角色,通过解读人的情绪反应,增强机器与人之间的交互体验。

在人机交互中,面部表情系统可以使计算机更加智能化,能够理解和响应用户的情感状态,从而提供更加个性化和富有同理心的服务。例如,在教育领域,该技术能够识别学生的情绪变化,帮助教师调整教学方式以提高学生的学习效率;在心理健康领域,它可以作为情绪监测工具,帮助医生评估患者情绪状态,辅助诊断和治疗;在自动驾驶系统中,通过监测驾驶员的表情和状态,可以有效预防疲劳或注意力不集中驾驶带来的风险。

此外,人脸面部表情识别技术在市场研究和用户体验设计中也极为有用,能够识别消费者在看到某个产品或广告时的真实情绪反应,从而帮助企业更好地了解消费者需求,优化产品设计和营销策略。在智能家居和安全监控系统中,结合情绪识别可以提供更加人性化的服务,如根据用户的情绪状态调整室内的灯光、音乐等环境设置,或是及时警觉异常情绪状态来预防潜在风险。除此之外,面部表情识别技术还广泛应用于娱乐产业,如视频游戏和虚拟现实中,以提供更加沉浸和互动的用户体验。

综上所述,人脸面部表情识别技术开启了新一代人机交互的大门,它的应用场景广泛,从提高商业价值到增进人类福祉,这项技术的发展极具潜力并正在逐渐改变我们的生活与工作方式。

博主通过搜集不同种类的人脸表情的相关数据图片,根据YOLOv8的目标检测技术,基于python与Pyqt5开发了一款界面简洁的人脸面部表情识别系统,可支持图片、视频以及摄像头检测,同时可以将图片或者视频检测结果进行保存

软件初始界面如下图所示:

检测结果界面如下:


一、软件核心功能介绍及效果演示

软件主要功能

1. 可进行7种不同人物表情识别,表情分别为:['生气','厌恶','害怕','高兴','中立','伤心','惊讶'];
2. 支持图片、视频及摄像头进行人脸表情检测;
3. 界面可实时显示表情结果置信度各表情概率值等信息;

(1)图片检测演示

点击打开图片图标,选择需要检测的图片,会显示检测结果,同时会将7种表情的概率值显示在右方。操作演示如下:点击目标下拉框后,可以选定指定目标的结果信息进行显示。

注:1.右侧目标默认显示置信度最大一个目标。

单个图片检测操作如下:

(2)视频检测演示

点击打开视频按钮,打开选择需要检测的视频,就会自动显示检测结果。

(3)摄像头检测演示

点击打开摄像头按钮,可以打开摄像头,可以实时进行检测,再次点击摄像头按钮,可关闭摄像头。

二、模型的训练、评估与推理

1.YOLOv8的基本原理

YOLOv8是一种前沿的目标检测技术,它基于先前YOLO版本在目标检测任务上的成功,进一步提升了性能和灵活性。主要的创新点包括一个新的骨干网络、一个新的 Ancher-Free 检测头和一个新的损失函数,可以在从 CPU 到 GPU 的各种硬件平台上运行

其主要网络结构如下:

本文的人脸表情识别,主要分为两步。第一步:检测人脸位置第二步:将人脸位置截取出来,作为输入传入到使用YOLOv8训练的表情分类模型,从而得到表情识别的结果。

第一步:人脸位置检测

关于人脸位置检测的方法有很多,比如:opencv的dilb库,face_recognition,insightface,mediapipe,deepface等都可以进行人脸位置检测。因为本文主要是对人脸面部表情进行识别,重点实现的是第二部分的表情识别部分。因此对于第一步,本文直接使用的是通过yolov8官方训练好的人脸检测模型yolov8n-face.pt,来进行人脸位置检测,该模型是通过人脸目标数据集训练而来,精度较高。

具体使用方法如下:

#coding:utf-8
from ultralytics import YOLO
import cv2
if __name__ == '__main__':
    # 所需加载的模型目录
    path = 'models/yolov8n-face.pt'
    # 需要检测的图片地址
    img_path = "TestFiles/test3.jpg"
    model = YOLO(path, task='detect')
    # 检测图片
    results = model(img_path,conf=0.5)
    res = results[0].boxes.xyxy.tolist()
    print(res)
    img = cv2.imread(img_path)
    for each in res:
        # 开始的y坐标:结束的y坐标,开始x:结束的x
        x1,y1,x2,y2 = each[:4]
        x1 = int(x1)
        y1 = int(y1)
        x2 = int(x2)
        y2 = int(y2)
        cv2.rectangle(img, (x1, y1), (x2, y2), (50, 50, 250), 3)
    cv2.imshow('face_detection', img)
    cv2.waitKey(0)


以上结果可以发现,该模型能够很好的检测人脸位置。下面我们需要使用yolov8训练一个表情识别的模型,对于检测到的人脸进行表情的识别判断

第二步:人脸表情识别

1. 数据集准备与训练

本文使用的数据集为人脸面部表情分类数据集,包含7种不同的人脸表情,分别是:['生气','厌恶','害怕','高兴','中立','伤心','惊讶']。一共包含35257张图片,其中训练集包含28079张图片,测试集包含7178张图片。部分数据集及类别信息如下。下面我们将使用该数据集训练一个表情分类模型,用于对截取后的人脸部分进行表情分类,从而达到进行表情识别的目的。


图片数据集的存放格式如下,在项目目录中新建datasets目录,同时将分类的图片分为训练集与验证集放入ExpressionData目录下。

2.模型训练

数据准备完成后,通过调用train.py文件进行模型训练,epochs参数用于调整训练的轮数,batch参数用于调整训练的批次大小【根据内存大小调整,最小为1】,代码如下:

#coding:utf-8
from ultralytics import YOLO
# 加载预训练模型
model = YOLO("yolov8n-cls.pt")
if __name__ == '__main__':
    model.train(data='datasets/ExpressionData', epochs=300, batch=4)
    # results = model.val()
    # # results = model("自己的验证图片")

3. 训练结果评估

在深度学习中,我们通常用损失函数下降的曲线来观察模型训练的情况。YOLOv8在训练结束后,可以在runs/目录下找到训练过程及结果文件,如下所示:

本文训练结果如下:

4. 利用模型进行表情识别

模型训练完成后,我们可以得到一个最佳的训练结果模型best.pt文件,在runs/trian/weights目录下。我们可以使用该文件进行后续的推理检测。

图片检测代码如下:

#coding:utf-8
from ultralytics import YOLO
import cv2
import Config
import detect_tools as tools
import numpy as np
if __name__ == '__main__':
    img_path = 'TestFiles/12.png'
    # 所需加载的模型目录
    face_model_path = 'models/yolov8n-face.pt'
    expression_model_path = 'models/expression_cls.pt'
    # 人脸检测模型
    face_model = YOLO(face_model_path, task='detect')
    # 表情识别模型
    expression_model = YOLO(expression_model_path, task='classify')
    cv_img = tools.img_cvread(img_path)
    face_cvimg, faces, locations = face_detect(cv_img, face_model)
    if faces is not None:
        for i in range(len(faces)):
            left, top, right, bottom = locations[i]
            # 彩色图片变灰度图
            img = cv2.cvtColor(faces[i], cv2.COLOR_BGR2GRAY)
            # 灰度图变3通道
            img = cv2.cvtColor(img, cv2.COLOR_GRAY2RGB)
            rec_res = expression_model(img)
            probs = rec_res[0].probs.data.tolist()
            num = np.argmax(probs)
            label = Config.names[num]
            face_cvimg = cv2.putText(face_cvimg, label, ((left, top - 10)), cv2.FONT_HERSHEY_SIMPLEX, 0.75, (0, 0, 250),
                                     2, cv2.LINE_AA)
    cv2.imshow('yolov8_detections',face_cvimg)
    cv2.waitKey(0)

执行上述代码后,会将执行的结果直接标注在图片上,结果如下:


以上便是关于此款人脸面部表情识别系统的原理与代码介绍。基于此模型,博主用pythonPyqt5开发了一个带界面的软件系统,即文中第二部分的演示内容,能够很好的支持图片、视频及摄像头进行检测

相关文章
|
15天前
|
弹性计算 数据管理 数据库
从零开始构建员工管理系统:Python与SQLite3的完美结合
本文介绍如何使用Python和Tkinter构建一个图形界面的员工管理系统(EMS)。系统包括数据库设计、核心功能实现和图形用户界面创建。主要功能有查询、添加、删除员工信息及统计员工数量。通过本文,你将学会如何结合SQLite数据库进行数据管理,并使用Tkinter创建友好的用户界面。
从零开始构建员工管理系统:Python与SQLite3的完美结合
|
7天前
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的【垃圾识别系统】实现~TensorFlow+人工智能+算法网络
垃圾识别分类系统。本系统采用Python作为主要编程语言,通过收集了5种常见的垃圾数据集('塑料', '玻璃', '纸张', '纸板', '金属'),然后基于TensorFlow搭建卷积神经网络算法模型,通过对图像数据集进行多轮迭代训练,最后得到一个识别精度较高的模型文件。然后使用Django搭建Web网页端可视化操作界面,实现用户在网页端上传一张垃圾图片识别其名称。
31 0
基于Python深度学习的【垃圾识别系统】实现~TensorFlow+人工智能+算法网络
|
7天前
|
机器学习/深度学习 人工智能 算法
基于深度学习的【蔬菜识别】系统实现~Python+人工智能+TensorFlow+算法模型
蔬菜识别系统,本系统使用Python作为主要编程语言,通过收集了8种常见的蔬菜图像数据集('土豆', '大白菜', '大葱', '莲藕', '菠菜', '西红柿', '韭菜', '黄瓜'),然后基于TensorFlow搭建卷积神经网络算法模型,通过多轮迭代训练最后得到一个识别精度较高的模型文件。在使用Django开发web网页端操作界面,实现用户上传一张蔬菜图片识别其名称。
42 0
基于深度学习的【蔬菜识别】系统实现~Python+人工智能+TensorFlow+算法模型
|
11月前
|
编解码 计算机视觉 Ruby
Python图像处理(二)opencv人脸检测
人脸检测部分,我们需要使用到opencv,看清楚,是opencv,不是opencv_python 首先,我们打开opencv的官网:opencv.org/# 当然,纯英文的。 我们找到library目录下的release目录: 选择你需要的版本,下载对应的平台就好。如下图所示,我当然要尝试最新版的了。 下载完成之后,双击安装就可以了。 我理解的人脸检测呢,其实就是opencv根据采集到的图像与其库中预置的人脸特征去比对,有符合人脸特征的,就说明采集到的图像是有人脸的。初学,我也不清楚我说的是否正确。 有不对的地方,欢迎大佬指出。
74 0
|
机器学习/深度学习 XML 算法
|
机器学习/深度学习 Linux 数据库
Python系列之三——人脸检测、人脸识别
之前有利用C++和OpenCv写过人脸识别的系列文章,对于人脸识别的基本理解和步骤流程等基本知识不做反复叙述。比詹小白还要白的童鞋可以查看往期文章进行了解噢
233 0
Python系列之三——人脸检测、人脸识别
|
计算机视觉
使用python-opencv进行人脸检测
可以使用opencv调用摄像头进行人脸识别和检测
|
计算机视觉 Python
python下人脸检测
首先先要安装python+opencv环境 这里我们用python3.5环境, 可以去https://repo.continuum.io/archive/下载windows,linux,macos的anaconda旧版本 安装好后建议对pip源进行更换,可以减少pip...
1573 0
|
API 计算机视觉 Python
OpenCV + Python 人脸检测
必备知识 Haar-like opencv api 读取图片 灰度转换 画图 显示图像 获取人脸识别训练数据 探测人脸 处理人脸探测的结果 实例 图片素材 人脸检测代码 人脸检测结果 总结 下午的时候,配好了OpenCV的Python环境,OpenCV的Python环境搭建。
1782 0
|
7天前
|
机器学习/深度学习 人工智能 TensorFlow
人工智能浪潮下的自我修养:从Python编程入门到深度学习实践
【10月更文挑战第39天】本文旨在为初学者提供一条清晰的道路,从Python基础语法的掌握到深度学习领域的探索。我们将通过简明扼要的语言和实际代码示例,引导读者逐步构建起对人工智能技术的理解和应用能力。文章不仅涵盖Python编程的基础,还将深入探讨深度学习的核心概念、工具和实战技巧,帮助读者在AI的浪潮中找到自己的位置。