基于YOLOv8深度学习的人脸面部表情识别系统【python源码+Pyqt5界面+数据集+训练代码】深度学习实战

简介: 基于YOLOv8深度学习的人脸面部表情识别系统【python源码+Pyqt5界面+数据集+训练代码】深度学习实战

前言

人脸面部表情识别在多个领域中都扮演着重要的角色,通过解读人的情绪反应,增强机器与人之间的交互体验。

在人机交互中,面部表情系统可以使计算机更加智能化,能够理解和响应用户的情感状态,从而提供更加个性化和富有同理心的服务。例如,在教育领域,该技术能够识别学生的情绪变化,帮助教师调整教学方式以提高学生的学习效率;在心理健康领域,它可以作为情绪监测工具,帮助医生评估患者情绪状态,辅助诊断和治疗;在自动驾驶系统中,通过监测驾驶员的表情和状态,可以有效预防疲劳或注意力不集中驾驶带来的风险。

此外,人脸面部表情识别技术在市场研究和用户体验设计中也极为有用,能够识别消费者在看到某个产品或广告时的真实情绪反应,从而帮助企业更好地了解消费者需求,优化产品设计和营销策略。在智能家居和安全监控系统中,结合情绪识别可以提供更加人性化的服务,如根据用户的情绪状态调整室内的灯光、音乐等环境设置,或是及时警觉异常情绪状态来预防潜在风险。除此之外,面部表情识别技术还广泛应用于娱乐产业,如视频游戏和虚拟现实中,以提供更加沉浸和互动的用户体验。

综上所述,人脸面部表情识别技术开启了新一代人机交互的大门,它的应用场景广泛,从提高商业价值到增进人类福祉,这项技术的发展极具潜力并正在逐渐改变我们的生活与工作方式。

博主通过搜集不同种类的人脸表情的相关数据图片,根据YOLOv8的目标检测技术,基于python与Pyqt5开发了一款界面简洁的人脸面部表情识别系统,可支持图片、视频以及摄像头检测,同时可以将图片或者视频检测结果进行保存

软件初始界面如下图所示:

检测结果界面如下:


一、软件核心功能介绍及效果演示

软件主要功能

1. 可进行7种不同人物表情识别,表情分别为:['生气','厌恶','害怕','高兴','中立','伤心','惊讶'];
2. 支持图片、视频及摄像头进行人脸表情检测;
3. 界面可实时显示表情结果置信度各表情概率值等信息;

(1)图片检测演示

点击打开图片图标,选择需要检测的图片,会显示检测结果,同时会将7种表情的概率值显示在右方。操作演示如下:点击目标下拉框后,可以选定指定目标的结果信息进行显示。

注:1.右侧目标默认显示置信度最大一个目标。

单个图片检测操作如下:

(2)视频检测演示

点击打开视频按钮,打开选择需要检测的视频,就会自动显示检测结果。

(3)摄像头检测演示

点击打开摄像头按钮,可以打开摄像头,可以实时进行检测,再次点击摄像头按钮,可关闭摄像头。

二、模型的训练、评估与推理

1.YOLOv8的基本原理

YOLOv8是一种前沿的目标检测技术,它基于先前YOLO版本在目标检测任务上的成功,进一步提升了性能和灵活性。主要的创新点包括一个新的骨干网络、一个新的 Ancher-Free 检测头和一个新的损失函数,可以在从 CPU 到 GPU 的各种硬件平台上运行

其主要网络结构如下:

本文的人脸表情识别,主要分为两步。第一步:检测人脸位置第二步:将人脸位置截取出来,作为输入传入到使用YOLOv8训练的表情分类模型,从而得到表情识别的结果。

第一步:人脸位置检测

关于人脸位置检测的方法有很多,比如:opencv的dilb库,face_recognition,insightface,mediapipe,deepface等都可以进行人脸位置检测。因为本文主要是对人脸面部表情进行识别,重点实现的是第二部分的表情识别部分。因此对于第一步,本文直接使用的是通过yolov8官方训练好的人脸检测模型yolov8n-face.pt,来进行人脸位置检测,该模型是通过人脸目标数据集训练而来,精度较高。

具体使用方法如下:

#coding:utf-8
from ultralytics import YOLO
import cv2
if __name__ == '__main__':
    # 所需加载的模型目录
    path = 'models/yolov8n-face.pt'
    # 需要检测的图片地址
    img_path = "TestFiles/test3.jpg"
    model = YOLO(path, task='detect')
    # 检测图片
    results = model(img_path,conf=0.5)
    res = results[0].boxes.xyxy.tolist()
    print(res)
    img = cv2.imread(img_path)
    for each in res:
        # 开始的y坐标:结束的y坐标,开始x:结束的x
        x1,y1,x2,y2 = each[:4]
        x1 = int(x1)
        y1 = int(y1)
        x2 = int(x2)
        y2 = int(y2)
        cv2.rectangle(img, (x1, y1), (x2, y2), (50, 50, 250), 3)
    cv2.imshow('face_detection', img)
    cv2.waitKey(0)


以上结果可以发现,该模型能够很好的检测人脸位置。下面我们需要使用yolov8训练一个表情识别的模型,对于检测到的人脸进行表情的识别判断

第二步:人脸表情识别

1. 数据集准备与训练

本文使用的数据集为人脸面部表情分类数据集,包含7种不同的人脸表情,分别是:['生气','厌恶','害怕','高兴','中立','伤心','惊讶']。一共包含35257张图片,其中训练集包含28079张图片,测试集包含7178张图片。部分数据集及类别信息如下。下面我们将使用该数据集训练一个表情分类模型,用于对截取后的人脸部分进行表情分类,从而达到进行表情识别的目的。


图片数据集的存放格式如下,在项目目录中新建datasets目录,同时将分类的图片分为训练集与验证集放入ExpressionData目录下。

2.模型训练

数据准备完成后,通过调用train.py文件进行模型训练,epochs参数用于调整训练的轮数,batch参数用于调整训练的批次大小【根据内存大小调整,最小为1】,代码如下:

#coding:utf-8
from ultralytics import YOLO
# 加载预训练模型
model = YOLO("yolov8n-cls.pt")
if __name__ == '__main__':
    model.train(data='datasets/ExpressionData', epochs=300, batch=4)
    # results = model.val()
    # # results = model("自己的验证图片")

3. 训练结果评估

在深度学习中,我们通常用损失函数下降的曲线来观察模型训练的情况。YOLOv8在训练结束后,可以在runs/目录下找到训练过程及结果文件,如下所示:

本文训练结果如下:

4. 利用模型进行表情识别

模型训练完成后,我们可以得到一个最佳的训练结果模型best.pt文件,在runs/trian/weights目录下。我们可以使用该文件进行后续的推理检测。

图片检测代码如下:

#coding:utf-8
from ultralytics import YOLO
import cv2
import Config
import detect_tools as tools
import numpy as np
if __name__ == '__main__':
    img_path = 'TestFiles/12.png'
    # 所需加载的模型目录
    face_model_path = 'models/yolov8n-face.pt'
    expression_model_path = 'models/expression_cls.pt'
    # 人脸检测模型
    face_model = YOLO(face_model_path, task='detect')
    # 表情识别模型
    expression_model = YOLO(expression_model_path, task='classify')
    cv_img = tools.img_cvread(img_path)
    face_cvimg, faces, locations = face_detect(cv_img, face_model)
    if faces is not None:
        for i in range(len(faces)):
            left, top, right, bottom = locations[i]
            # 彩色图片变灰度图
            img = cv2.cvtColor(faces[i], cv2.COLOR_BGR2GRAY)
            # 灰度图变3通道
            img = cv2.cvtColor(img, cv2.COLOR_GRAY2RGB)
            rec_res = expression_model(img)
            probs = rec_res[0].probs.data.tolist()
            num = np.argmax(probs)
            label = Config.names[num]
            face_cvimg = cv2.putText(face_cvimg, label, ((left, top - 10)), cv2.FONT_HERSHEY_SIMPLEX, 0.75, (0, 0, 250),
                                     2, cv2.LINE_AA)
    cv2.imshow('yolov8_detections',face_cvimg)
    cv2.waitKey(0)

执行上述代码后,会将执行的结果直接标注在图片上,结果如下:


以上便是关于此款人脸面部表情识别系统的原理与代码介绍。基于此模型,博主用pythonPyqt5开发了一个带界面的软件系统,即文中第二部分的演示内容,能够很好的支持图片、视频及摄像头进行检测

相关文章
|
2天前
|
机器学习/深度学习 网络协议 Python
Python Socket深度学习分享
Python Socket深度学习分享
|
2天前
|
机器学习/深度学习 数据采集 TensorFlow
使用Python实现深度学习模型:图神经网络(GNN)
使用Python实现深度学习模型:图神经网络(GNN)
11 1
|
3天前
|
机器学习/深度学习 自然语言处理 TensorFlow
使用Python实现深度学习模型:语言模型与文本生成
使用Python实现深度学习模型:语言模型与文本生成
32 5
|
5天前
|
机器学习/深度学习 人工智能 算法
海洋生物识别系统+图像识别+Python+人工智能课设+深度学习+卷积神经网络算法+TensorFlow
海洋生物识别系统。以Python作为主要编程语言,通过TensorFlow搭建ResNet50卷积神经网络算法,通过对22种常见的海洋生物('蛤蜊', '珊瑚', '螃蟹', '海豚', '鳗鱼', '水母', '龙虾', '海蛞蝓', '章鱼', '水獭', '企鹅', '河豚', '魔鬼鱼', '海胆', '海马', '海豹', '鲨鱼', '虾', '鱿鱼', '海星', '海龟', '鲸鱼')数据集进行训练,得到一个识别精度较高的模型文件,然后使用Django开发一个Web网页平台操作界面,实现用户上传一张海洋生物图片识别其名称。
84 7
海洋生物识别系统+图像识别+Python+人工智能课设+深度学习+卷积神经网络算法+TensorFlow
|
5天前
|
机器学习/深度学习 人工智能 算法
【昆虫识别系统】图像识别Python+卷积神经网络算法+人工智能+深度学习+机器学习+TensorFlow+ResNet50
昆虫识别系统,使用Python作为主要开发语言。通过TensorFlow搭建ResNet50卷积神经网络算法(CNN)模型。通过对10种常见的昆虫图片数据集('蜜蜂', '甲虫', '蝴蝶', '蝉', '蜻蜓', '蚱蜢', '蛾', '蝎子', '蜗牛', '蜘蛛')进行训练,得到一个识别精度较高的H5格式模型文件,然后使用Django搭建Web网页端可视化操作界面,实现用户上传一张昆虫图片识别其名称。
118 7
【昆虫识别系统】图像识别Python+卷积神经网络算法+人工智能+深度学习+机器学习+TensorFlow+ResNet50
|
12小时前
|
机器学习/深度学习 自动驾驶 算法
深度学习在图像识别中的应用与挑战
本文深入探讨了深度学习技术在图像识别领域的应用及其面临的主要挑战。通过分析近期的科研数据和实验结果,我们揭示了深度学习模型在提高图像识别准确率方面的潜力以及存在的局限性。同时,文章还讨论了如何通过技术创新克服这些挑战,以实现更高效、更准确的图像识别。
|
13小时前
|
机器学习/深度学习 自然语言处理 数据可视化
深度学习在自然语言处理中的应用与挑战
随着人工智能技术的飞速发展,深度学习已成为自然语言处理(NLP)领域的核心驱动力。本文将深入探讨深度学习在NLP中的广泛应用,包括语音识别、机器翻译、情感分析等方面,并分析其面临的挑战,如数据稀缺性、模型可解释性等问题。通过引用权威研究数据和案例,揭示深度学习技术在推动NLP进步的同时,如何应对这些挑战,以实现更高效、准确的语言处理能力。
7 1
|
19小时前
|
机器学习/深度学习 搜索推荐 算法
深度学习在医学影像诊断中的应用与前景
本文探讨了深度学习技术在医学影像诊断中的关键应用及其未来发展前景。通过分析当前的技术趋势和应用案例,揭示了深度学习在提高医学影像诊断准确性、效率和普及性方面的潜力。深度学习不仅仅是一种技术革新,更是医疗行业迈向智能化和个性化诊疗的重要一步。
7 0
|
19小时前
|
机器学习/深度学习 人工智能 自动驾驶
深度学习在图像识别中的应用及其挑战
【6月更文挑战第27天】随着人工智能的迅速发展,深度学习已成为推动技术革新的核心力量之一。特别是在图像识别领域,深度学习模型如卷积神经网络(CNNs)已展现出前所未有的性能。本文将探讨深度学习如何改变图像识别的游戏规则,并分析其面临的主要挑战,包括数据偏差、过拟合和对抗性攻击等问题。
|
1天前
|
机器学习/深度学习 人工智能 自然语言处理
深度学习中的注意力机制:技术洞察与应用前景
在人工智能的浪潮下,深度学习技术以其强大的数据处理和模式识别能力引领着技术发展的前沿。特别是注意力机制的引入,它模仿人类视觉注意力的选择性聚焦,极大地提高了模型处理序列数据的效率和准确度。本文将深入解析注意力机制的原理,探讨其在自然语言处理、计算机视觉等领域的应用,并预测未来的发展趋势。通过严谨的逻辑推理和丰富的数据支撑,我们旨在展现注意力机制如何成为深度学习领域的重要创新点。