【KMeans】Python实现KMeans算法及其可视化

简介: 【KMeans】Python实现KMeans算法及其可视化

基本原理

python实现KMeans算法

# 导入相应的包
from copy import deepcopy
import numpy as np
import pandas as pd
from matplotlib import pyplot as plt
# 导入数据
data = pd.read_csv('data.csv')
print("Input Data and Shape")
print(data.shape)
data.head()
Input Data and Shape
(3000, 2)
V1 V2
0 2.072345 -3.241693
1 17.936710 15.784810
2 1.083576 7.319176
3 11.120670 14.406780
4 23.711550 2.557729
# 提取字段并可视化数据,使用scatter plot
f1 = data['V1'].values
f2 = data['V2'].values
X = np.array(list(zip(f1, f2)))
# X = np.random.random((200, 2))*10
plt.scatter(X[:,0], X[:,1], c='black', s=6)

# K-means里的K值
k = 3
# 随机初始化K个中心点,把结果存储在C
C_x = np.random.randint(0, np.max(X), size=k)
C_y = np.random.randint(0, np.max(X), size=k)
C = np.array(list(zip(C_x, C_y)), dtype=np.float32)
print("初始化之后的中心点:")
print(C)
# 把中心点也展示一下
plt.scatter(X[:,0], X[:,1], c='#050505', s=7)
plt.scatter(C[:,0], C[:,1], marker='*', s=300, c='g')
初始化之后的中心点:
[[85.  3.]
 [70. 22.]
 [41. 18.]]

# 存储之前的中心点
C_old = np.zeros(C.shape)
clusters = np.zeros(len(X)) # K=3,  clusters = [0,0,1,2,1,0]
def dist(a, b, ax=1):
    return np.linalg.norm(a - b, axis=ax)
error = dist(C, C_old, None)
# 循环算法,直到收敛。收敛的条件就是,判断当前的中心点与之前的中心点之间有没有变化,没有变化距离就会变成0,然后抛出异常
while error != 0:
    # Assigning each value to its closest cluster
    for i in range(len(X)):
        distances = dist(X[i], C)
        cluster = np.argmin(distances)
        clusters[i] = cluster
    # 在计算新的中心点之前,先把旧的中心点存下来,以便计算距离
    C_old = deepcopy(C)
    # 计算新的中心点
    for i in range(k):
        points = [X[j] for j in range(len(X)) if clusters[j] == i]
        C[i] = np.mean(points, axis=0)
    error = dist(C, C_old, None)
colors = ['r', 'g', 'b', 'y', 'c', 'm']
fig, ax = plt.subplots()
for i in range(k):
        points = np.array([X[j] for j in range(len(X)) if clusters[j] == i])
        ax.scatter(points[:, 0], points[:, 1], s=7, c=colors[i])
ax.scatter(C[:, 0], C[:, 1], marker='*', s=200, c='#050505')

相关文章
|
2月前
|
算法 Python
Apriori算法的Python实例演示
经过运行,你会看到一些集合出现,每个集合的支持度也会给出。这些集合就是你想要的,经常一起被购买的商品组合。不要忘记,`min_support`参数将决定频繁项集的数量和大小,你可以根据自己的需要进行更改。
117 18
|
2月前
|
存储 机器学习/深度学习 算法
论上网限制软件中 Python 动态衰减权重算法于行为管控领域的创新性应用
在网络安全与行为管理的学术语境中,上网限制软件面临着精准识别并管控用户不合规网络请求的复杂任务。传统的基于静态规则库或固定阈值的策略,在实践中暴露出较高的误判率与较差的动态适应性。本研究引入一种基于 “动态衰减权重算法” 的优化策略,融合时间序列分析与权重衰减机制,旨在显著提升上网限制软件的实时决策效能。
71 2
|
3月前
|
算法 数据可视化 Python
Python中利用遗传算法探索迷宫出路
本文探讨了如何利用Python和遗传算法解决迷宫问题。迷宫建模通过二维数组实现,0表示通路,1为墙壁,'S'和'E'分别代表起点与终点。遗传算法的核心包括个体编码(路径方向序列)、适应度函数(评估路径有效性)、选择、交叉和变异操作。通过迭代优化,算法逐步生成更优路径,最终找到从起点到终点的最佳解决方案。文末还展示了结果可视化方法及遗传算法的应用前景。
|
3月前
|
存储 监控 算法
基于 Python 哈希表算法的局域网网络监控工具:实现高效数据管理的核心技术
在当下数字化办公的环境中,局域网网络监控工具已成为保障企业网络安全、确保其高效运行的核心手段。此类工具通过对网络数据的收集、分析与管理,赋予企业实时洞察网络活动的能力。而在其运行机制背后,数据结构与算法发挥着关键作用。本文聚焦于 PHP 语言中的哈希表算法,深入探究其在局域网网络监控工具中的应用方式及所具备的优势。
100 7
|
3月前
|
数据采集 数据可视化 数据挖掘
基于Python的App流量大数据分析与可视化方案
基于Python的App流量大数据分析与可视化方案
|
3月前
|
存储 监控 算法
员工电脑监控场景下 Python 红黑树算法的深度解析
在当代企业管理范式中,员工电脑监控业已成为一种广泛采用的策略性手段,其核心目标在于维护企业信息安全、提升工作效能并确保合规性。借助对员工电脑操作的实时监测机制,企业能够敏锐洞察潜在风险,诸如数据泄露、恶意软件侵袭等威胁。而员工电脑监控系统的高效运作,高度依赖于底层的数据结构与算法架构。本文旨在深入探究红黑树(Red - Black Tree)这一数据结构在员工电脑监控领域的应用,并通过 Python 代码实例详尽阐释其实现机制。
82 7
|
3月前
|
运维 监控 算法
基于 Python 迪杰斯特拉算法的局域网计算机监控技术探究
信息技术高速演进的当下,局域网计算机监控对于保障企业网络安全、优化资源配置以及提升整体运行效能具有关键意义。通过实时监测网络状态、追踪计算机活动,企业得以及时察觉潜在风险并采取相应举措。在这一复杂的监控体系背后,数据结构与算法发挥着不可或缺的作用。本文将聚焦于迪杰斯特拉(Dijkstra)算法,深入探究其在局域网计算机监控中的应用,并借助 Python 代码示例予以详细阐释。
87 6
|
4月前
|
人工智能 编解码 算法
如何在Python下实现摄像头|屏幕|AI视觉算法数据的RTMP直播推送
本文详细讲解了在Python环境下使用大牛直播SDK实现RTMP推流的过程。从技术背景到代码实现,涵盖Python生态优势、AI视觉算法应用、RTMP稳定性及跨平台支持等内容。通过丰富功能如音频编码、视频编码、实时预览等,结合实际代码示例,为开发者提供完整指南。同时探讨C接口转换Python时的注意事项,包括数据类型映射、内存管理、回调函数等关键点。最终总结Python在RTMP推流与AI视觉算法结合中的重要性与前景,为行业应用带来便利与革新。
196 5
|
4月前
|
存储 监控 算法
基于 Python 哈希表算法的员工上网管理策略研究
于当下数字化办公环境而言,员工上网管理已成为企业运营管理的关键环节。企业有必要对员工的网络访问行为予以监控,以此确保信息安全并提升工作效率。在处理员工上网管理相关数据时,适宜的数据结构与算法起着举足轻重的作用。本文将深入探究哈希表这一数据结构在员工上网管理场景中的应用,并借助 Python 代码示例展开详尽阐述。
73 3

热门文章

最新文章

推荐镜像

更多