【从零开始学习深度学习】27.卷积神经网络之VGG11模型介绍及其Pytorch实现【含完整代码】

本文涉及的产品
函数计算FC,每月15万CU 3个月
简介: 【从零开始学习深度学习】27.卷积神经网络之VGG11模型介绍及其Pytorch实现【含完整代码】

AlexNet在LeNet的基础上增加了3个卷积层。但AlexNet对卷积窗口、输出通道数和构造顺序均做了大量的调整。虽然AlexNet模型表明深度卷积神经网络可以取得出色的结果,但并没有提供相应规则以指导后来的研究者如何设计新的网络。我们将在后续介绍几种不同的深度网络设计思路。

本文将介绍VGG网络模型,VGG主要思路是通过重复使用简单的基础块来构建深度模型。

1. VGG块介绍

VGG块的组成规律是:连续使用数个相同的填充为1、窗口形状为3 × 3 3\times 33×3卷积层后接上一个步幅为2、窗口形状为2 × 2 2\times 22×2的最大池化层。卷积层保持输入的高和宽不变,而池化层则对其减半

3x3卷积的优点:

多个3×3的卷积层比一个大尺寸的filter有更少的参数,假设卷基层的输入和输出的特征图大小相同为C,那么三个3×3的卷积层参数个数3×(3×3×C×C)=27CC;一个7×7的卷积层参数为49CC;所以可以把三个3×3的filter看成是一个7×7filter的分解(中间层有非线性的分解)。

下面我们定义一个vgg_block函数来实现这个基础的VGG块,它可以指定卷积层的数量和输入输出通道数。

对于给定的感受野(与输出有关的输入图片的局部大小),采用堆积的小卷积核优于采用大的卷积核,因为可以增加网络深度来保证学习更复杂的模式,而且代价还比较小(参数更少)。例如,在VGG中,使用了3个3x3卷积核来代替7x7卷积核,使用了2个3x3卷积核来代替5*5卷积核,这样做的主要目的是在保证具有相同感知野的条件下,提升了网络的深度,在一定程度上提升了神经网络的训练效果。

import time
import torch
from torch import nn, optim
import sys
import d2lzh_pytorch as d2l
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
def vgg_block(num_convs, in_channels, out_channels):
    blk = []
    for i in range(num_convs):
        if i == 0:
            blk.append(nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1))
        else:
            blk.append(nn.Conv2d(out_channels, out_channels, kernel_size=3, padding=1))
        blk.append(nn.ReLU())
    blk.append(nn.MaxPool2d(kernel_size=2, stride=2)) # 这里会使宽高减半
    return nn.Sequential(*blk)

2. 构造VGG网络模型

VGG采用的是一种Pre-training的方式,先训练浅层的的简单网络 VGG11,再复用 VGG11 的权重来初始化 VGG13,如此反复训练并初始化 VGG19,能够使训练时收敛的速度更快。整个网络都使用卷积核尺寸为 3×3 和最大池化尺寸 2×2。比较常用的VGG-16的16指的是conv+fc的总层数是16,是不包括max pool的层数!

下图中最左侧的A列表示最原始的VGG11,因为这个网络使用了8个卷积层和3个全连接层,所以被称为VGG-11。

VGG与AlexNet和LeNet一样,VGG网络由卷积层模块后接全连接层模块构成。卷积层模块串联数个vgg_block,其超参数由变量conv_arch定义。该变量指定了每个VGG块里卷积层个数和输入输出通道数。全连接模块则跟AlexNet中的一样。

现在我们构造一个VGG网络。它有5个卷积块,前2块使用单卷积层,而后3块使用双卷积层。第一块的输入输出通道分别是1(因为下面要使用的Fashion-MNIST数据的通道数为1)和64,之后每次对输出通道数翻倍,直到变为512。

conv_arch = ((1, 1, 64), (1, 64, 128), (2, 128, 256), (2, 256, 512), (2, 512, 512))
# 经过5个vgg_block, 宽高会减半5次, 变成 224/32 = 7
fc_features = 512 * 7 * 7 # c * w * h
fc_hidden_units = 4096 # 任意

下面我们实现VGG-11。

def vgg(conv_arch, fc_features, fc_hidden_units=4096):
    net = nn.Sequential()
    # 卷积层部分
    for i, (num_convs, in_channels, out_channels) in enumerate(conv_arch):
        # 每经过一个vgg_block都会使宽高减半
        net.add_module("vgg_block_" + str(i+1), vgg_block(num_convs, in_channels, out_channels))
    # 全连接层部分
    net.add_module("fc", nn.Sequential(d2l.FlattenLayer(),
                                 nn.Linear(fc_features, fc_hidden_units),
                                 nn.ReLU(),
                                 nn.Dropout(0.5),
                                 nn.Linear(fc_hidden_units, fc_hidden_units),
                                 nn.ReLU(),
                                 nn.Dropout(0.5),
                                 nn.Linear(fc_hidden_units, 10)
                                ))
    return net

下面构造一个高和宽均为224的单通道数据样本来观察每一层的输出形状。

net = vgg(conv_arch, fc_features, fc_hidden_units)
X = torch.rand(1, 1, 224, 224)
# named_children获取一级子模块及其名字(named_modules会返回所有子模块,包括子模块的子模块)
for name, blk in net.named_children(): 
    X = blk(X)
    print(name, 'output shape: ', X.shape)

输出:

vgg_block_1 output shape:  torch.Size([1, 64, 112, 112])
vgg_block_2 output shape:  torch.Size([1, 128, 56, 56])
vgg_block_3 output shape:  torch.Size([1, 256, 28, 28])
vgg_block_4 output shape:  torch.Size([1, 512, 14, 14])
vgg_block_5 output shape:  torch.Size([1, 512, 7, 7])
fc output shape:  torch.Size([1, 10])

可以看到,每次我们将输入的高和宽减半,直到最终高和宽变成7后传入全连接层。与此同时,输出通道数每次翻倍,直到变成512。因为每个卷积层的窗口大小一样,所以每层的模型参数尺寸和计算复杂度与输入高、输入宽、输入通道数和输出通道数的乘积成正比。VGG这种高和宽减半以及通道翻倍的设计使得多数卷积层都有相同的模型参数尺寸和计算复杂度。

3. 获取Fashion-MNIST数据并用VGG-11训练模型

因为VGG-11计算比AlexNet更加复杂,出于测试的目的我们构造一个通道数更小的网络在Fashion-MNIST数据集上进行训练。

ratio = 8
small_conv_arch = [(1, 1, 64//ratio), (1, 64//ratio, 128//ratio), (2, 128//ratio, 256//ratio), 
                   (2, 256//ratio, 512//ratio), (2, 512//ratio, 512//ratio)]
net = vgg(small_conv_arch, fc_features // ratio, fc_hidden_units // ratio)
print(net)

输出:

Sequential(
  (vgg_block_1): Sequential(
    (0): Conv2d(1, 8, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (1): ReLU()
    (2): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
  )
  (vgg_block_2): Sequential(
    (0): Conv2d(8, 16, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (1): ReLU()
    (2): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
  )
  (vgg_block_3): Sequential(
    (0): Conv2d(16, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (1): ReLU()
    (2): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (3): ReLU()
    (4): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
  )
  (vgg_block_4): Sequential(
    (0): Conv2d(32, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (1): ReLU()
    (2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (3): ReLU()
    (4): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
  )
  (vgg_block_5): Sequential(
    (0): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (1): ReLU()
    (2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (3): ReLU()
    (4): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
  )
  (fc): Sequential(
    (0): FlattenLayer()
    (1): Linear(in_features=3136, out_features=512, bias=True)
    (2): ReLU()
    (3): Dropout(p=0.5)
    (4): Linear(in_features=512, out_features=512, bias=True)
    (5): ReLU()
    (6): Dropout(p=0.5)
    (7): Linear(in_features=512, out_features=10, bias=True)
  )
)

模型训练过程与之前的AlexNet类似。

batch_size = 64
# 如出现“out of memory”的报错信息,可减小batch_size或resize
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size, resize=224)
lr, num_epochs = 0.001, 5
optimizer = torch.optim.Adam(net.parameters(), lr=lr)
d2l.train_ch5(net, train_iter, test_iter, batch_size, optimizer, device, num_epochs)

输出:

training on  cuda
epoch 1, loss 0.0101, train acc 0.755, test acc 0.859, time 255.9 sec
epoch 2, loss 0.0051, train acc 0.882, test acc 0.902, time 238.1 sec
epoch 3, loss 0.0043, train acc 0.900, test acc 0.908, time 225.5 sec
epoch 4, loss 0.0038, train acc 0.913, test acc 0.914, time 230.3 sec
epoch 5, loss 0.0035, train acc 0.919, test acc 0.918, time 153.9 sec

4.总结

  • VGG-11通过5个可以重复使用的卷积块来构造网络。根据每块里卷积层个数和输出通道数的不同可以定义出不同的VGG模型。
相关实践学习
【文生图】一键部署Stable Diffusion基于函数计算
本实验教你如何在函数计算FC上从零开始部署Stable Diffusion来进行AI绘画创作,开启AIGC盲盒。函数计算提供一定的免费额度供用户使用。本实验答疑钉钉群:29290019867
建立 Serverless 思维
本课程包括: Serverless 应用引擎的概念, 为开发者带来的实际价值, 以及让您了解常见的 Serverless 架构模式
相关文章
|
2月前
|
机器学习/深度学习 PyTorch API
PyTorch量化感知训练技术:模型压缩与高精度边缘部署实践
本文深入探讨神经网络模型量化技术,重点讲解训练后量化(PTQ)与量化感知训练(QAT)两种主流方法。PTQ通过校准数据集确定量化参数,快速实现模型压缩,但精度损失较大;QAT在训练中引入伪量化操作,使模型适应低精度环境,显著提升量化后性能。文章结合PyTorch实现细节,介绍Eager模式、FX图模式及PyTorch 2导出量化等工具,并分享大语言模型Int4/Int8混合精度实践。最后总结量化最佳策略,包括逐通道量化、混合精度设置及目标硬件适配,助力高效部署深度学习模型。
220 21
PyTorch量化感知训练技术:模型压缩与高精度边缘部署实践
|
1月前
|
机器学习/深度学习 PyTorch 算法框架/工具
提升模型泛化能力:PyTorch的L1、L2、ElasticNet正则化技术深度解析与代码实现
本文将深入探讨L1、L2和ElasticNet正则化技术,重点关注其在PyTorch框架中的具体实现。关于这些技术的理论基础,建议读者参考相关理论文献以获得更深入的理解。
55 4
提升模型泛化能力:PyTorch的L1、L2、ElasticNet正则化技术深度解析与代码实现
|
2月前
|
机器学习/深度学习 PyTorch 编译器
深入解析torch.compile:提升PyTorch模型性能、高效解决常见问题
PyTorch 2.0推出的`torch.compile`功能为深度学习模型带来了显著的性能优化能力。本文从实用角度出发,详细介绍了`torch.compile`的核心技巧与应用场景,涵盖模型复杂度评估、可编译组件分析、系统化调试策略及性能优化高级技巧等内容。通过解决图断裂、重编译频繁等问题,并结合分布式训练和NCCL通信优化,开发者可以有效提升日常开发效率与模型性能。文章为PyTorch用户提供了全面的指导,助力充分挖掘`torch.compile`的潜力。
162 17
|
2月前
|
机器学习/深度学习 搜索推荐 PyTorch
基于昇腾用PyTorch实现CTR模型DIN(Deep interest Netwok)网络
本文详细讲解了如何在昇腾平台上使用PyTorch训练推荐系统中的经典模型DIN(Deep Interest Network)。主要内容包括:DIN网络的创新点与架构剖析、Activation Unit和Attention模块的实现、Amazon-book数据集的介绍与预处理、模型训练过程定义及性能评估。通过实战演示,利用Amazon-book数据集训练DIN模型,最终评估其点击率预测性能。文中还提供了代码示例,帮助读者更好地理解每个步骤的实现细节。
|
3月前
|
存储 自然语言处理 PyTorch
从零开始用Pytorch实现LLaMA 4的混合专家(MoE)模型
近期发布的LLaMA 4模型引入混合专家(MoE)架构,以提升效率与性能。尽管社区对其实际表现存在讨论,但MoE作为重要设计范式再次受到关注。本文通过Pytorch从零实现简化版LLaMA 4 MoE模型,涵盖数据准备、分词、模型构建(含词元嵌入、RoPE、RMSNorm、多头注意力及MoE层)到训练与文本生成全流程。关键点包括MoE层实现(路由器、专家与共享专家)、RoPE处理位置信息及RMSNorm归一化。虽规模小于实际LLaMA 4,但清晰展示MoE核心机制:动态路由与稀疏激活专家,在控制计算成本的同时提升性能。完整代码见链接,基于FareedKhan-dev的Github代码修改而成。
94 9
从零开始用Pytorch实现LLaMA 4的混合专家(MoE)模型
|
3月前
|
机器学习/深度学习 数据可视化 机器人
比扩散策略更高效的生成模型:流匹配的理论基础与Pytorch代码实现
扩散模型和流匹配是生成高分辨率数据(如图像和机器人轨迹)的先进技术。扩散模型通过逐步去噪生成数据,其代表应用Stable Diffusion已扩展至机器人学领域形成“扩散策略”。流匹配作为更通用的方法,通过学习时间依赖的速度场将噪声转化为目标分布,适用于图像生成和机器人轨迹生成,且通常以较少资源实现更快生成。 本文深入解析流匹配在图像生成中的应用,核心思想是将图像视为随机变量的实现,并通过速度场将源分布转换为目标分布。文中提供了一维模型训练实例,展示了如何用神经网络学习速度场,以及使用最大均值差异(MMD)改进训练效果。与扩散模型相比,流匹配结构简单,资源需求低,适合多模态分布生成。
162 13
比扩散策略更高效的生成模型:流匹配的理论基础与Pytorch代码实现
|
3月前
|
机器学习/深度学习 编解码 PyTorch
从零实现基于扩散模型的文本到视频生成系统:技术详解与Pytorch代码实现
本文介绍了一种基于扩散模型的文本到视频生成系统,详细展示了模型架构、训练流程及生成效果。通过3D U-Net结构和多头注意力机制,模型能够根据文本提示生成高质量视频。
117 1
从零实现基于扩散模型的文本到视频生成系统:技术详解与Pytorch代码实现
|
7月前
|
SQL 安全 网络安全
网络安全与信息安全:知识分享####
【10月更文挑战第21天】 随着数字化时代的快速发展,网络安全和信息安全已成为个人和企业不可忽视的关键问题。本文将探讨网络安全漏洞、加密技术以及安全意识的重要性,并提供一些实用的建议,帮助读者提高自身的网络安全防护能力。 ####
177 17
|
7月前
|
SQL 安全 网络安全
网络安全与信息安全:关于网络安全漏洞、加密技术、安全意识等方面的知识分享
随着互联网的普及,网络安全问题日益突出。本文将从网络安全漏洞、加密技术和安全意识三个方面进行探讨,旨在提高读者对网络安全的认识和防范能力。通过分析常见的网络安全漏洞,介绍加密技术的基本原理和应用,以及强调安全意识的重要性,帮助读者更好地保护自己的网络信息安全。
131 10
|
7月前
|
存储 SQL 安全
网络安全与信息安全:关于网络安全漏洞、加密技术、安全意识等方面的知识分享
随着互联网的普及,网络安全问题日益突出。本文将介绍网络安全的重要性,分析常见的网络安全漏洞及其危害,探讨加密技术在保障网络安全中的作用,并强调提高安全意识的必要性。通过本文的学习,读者将了解网络安全的基本概念和应对策略,提升个人和组织的网络安全防护能力。

热门文章

最新文章

推荐镜像

更多