【大数据】MapReduce JAVA API编程实践及适用场景介绍

本文涉及的产品
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
简介: 【大数据】MapReduce JAVA API编程实践及适用场景介绍

1.前言

本文是作者大数据系列专栏的其中一篇,前文我们依次聊了大数据的概论、分布式文件系统、分布式数据库、以及计算引擎mapreduce核心概念以及工作原理。

书接上文,本文将会继续聊一下mapreduce的编程实践以及mapreduce的适用场景。基于的Hadoop版本依然是前文的hadoop3.1.3。

2.mapreduce编程示例

本文依然以最经典的单词分词,即统计各个单词数量的业务场景为例。mapreduce其实就是编写map函数和reduce函数。map reduce的Java API中提供了map和reduce的标准接口,实现接口,编写自己的业务逻辑即可。

依赖:

<dependency>
   <groupId>org.apache.hadoop</groupId>
   <artifactId>hadoop-mapreduce-client-core</artifactId>
   <version>3.1.3</version>
</dependency>

map函数:

map阶段会从分布式文件系统HDFS中去读数据,读入的数据先进行分词,然后进行初步的统计。所以编写map函数要写的就是分词和统计:

import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.mapreduce.Mapper;
import java.io.IOException;
import java.util.StringTokenizer;
import org.apache.hadoop.io.Text;
 
public class MyMapper extends Mapper<Object, Text, Text, IntWritable> {
    private Text word = new Text();
 
    @Override
    protected void map(Object key, Text value, Mapper<Object, Text, Text, IntWritable>.Context context) throws IOException, InterruptedException {
        StringTokenizer itr = new StringTokenizer(value.toString());
        while (itr.hasMoreTokens()) {
            word.set(itr.nextToken());
            context.write(word, new IntWritable(1));
        }
    }
}

key,是每条输入的键,默认情况下处理文本文件时通常是记录的偏移量,类型为Object(实践中常为LongWritable)。


context是输出。


在new StringTokenizer这一步,文本就会进行分词。


IntWritable是int的包装类,主要是为了赋予int类型可序列化的能力,毕竟要在网络中进行传输。


reduce函数:


reduce的shuffle是底层自动执行的,所以我们只需要编写好reduce函数即可:


reduce函数的输入就是shuffle后的<key,Iterable>,context是输出。

import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;
import java.io.IOException;
 
public class MyReducer extends Reducer<Text, IntWritable, Text, IntWritable> {
    @Override
    protected void reduce(Text key, Iterable<IntWritable> values, Reducer<Text, IntWritable, Text, IntWritable>.Context context) throws IOException, InterruptedException {
        int sum=0;
        for(IntWritable val:values){
            sum+=val.get();
        }
        context.write(key,new IntWritable(sum));
    }
}

main函数:

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
 
public class MapReduceTest {
    public static void main(String[] args)throws Exception {
        Configuration conf = new Configuration();
        conf.set("fs.defaultFS", "hdfs://192.168.31.10:9000");
        conf.set("fs.hdfs.impl","org.apache.hadoop.hdfs.DistributedFileSystem");
        Job job = Job.getInstance(conf, "word count");
        job.setJarByClass(MapReduceTest.class); // 使用当前类的类加载器
        job.setMapperClass(MyMapper.class);
        job.setCombinerClass(MyReducer.class);
        job.setReducerClass(MyReducer.class);
        job.setOutputKeyClass(Text.class);
        job.setOutputValueClass(IntWritable.class);
        FileInputFormat.addInputPath(job, new Path("/user/hadoop/input/input1.txt"));
        FileOutputFormat.setOutputPath(job, new Path("/user/hadoop/output"));
        job.waitForCompletion(true);
    }
}

3.MapReduce适用场景

mapreduce适用于哪些场景?之前聊了那么多,似乎MapReduce也就只能统计一下数量?其实不是这样的,MapReduce能用来实现一切代数关系运算,即:选择、投影、并、交、差、连接,也就是对应关系型数据库的全部操作。

以连接为例:

在存数据的时候通过一个外键来预留好关联点。map和reduce函数都是我们手动定义的,map阶段我们完全可以把外键作为key,这样在reduce的shuffle阶段数据自然就会通过外键这个key聚合在一起。


ok,我们知道了MapReduce能将数据关联在一起,那么MapReduce能做的事情可就太多了。回想一下类比我们在用关系型数据库时,想对数据进行统计分析,是不是其实就是将数据连接聚合在一起。所以我们说MapReduce可以完成一切对于数据的关系运算,也就是完成一切对于数据的计算任务。


下面举几个具体在行业内落地的应用场景:


1.搜索引擎的网页索引:


网页爬虫抓取大量网页内容。

Map阶段:解析每个网页,提取关键词,生成键值对(关键词, 网页URL)。

Reduce阶段:对关键词进行聚合,生成倒排索引,即每个关键词对应一组包含该关键词的网页列表。



2.用户行为分析:


收集用户在网站上的浏览、点击、购买等行为数据。

Map阶段:将每个事件转化为键值对(用户ID, 行为详情)。

Reduce阶段:按用户ID聚合,统计用户的总访问次数、购买行为、最常访问的页面等。



3.广告效果评估:


分析广告展示、点击和转化数据。

Map阶段:处理广告日志,产生(广告ID, 展示次数/点击次数/转化次数)键值对。

Reduce阶段:计算每个广告的CTR(点击率)和ROI(投资回报率)。



4.社交网络分析:


计算用户之间的关系,如好友数、影响力等。

Map阶段:遍历用户关系数据,输出(用户A, 用户B)键值对表示A关注B。

Reduce阶段:对每个用户进行聚合,计算其关注者和被关注者的数量。



5.新闻热点检测:


分析新闻标题和内容,找出热门话题。

Map阶段:将每条新闻转化为(关键词, 新闻ID)键值对。

Reduce阶段:对关键词进行聚合,统计出现频率,找出出现最多的关键词。



6.图像处理:


大规模图像分类或标签生成。

Map阶段:对每张图片进行预处理,生成特征向量和对应的图像ID。

Reduce阶段:使用机器学习模型对特征向量进行分类或聚类。



7.金融领域:


信用评分模型的训练。

Map阶段:处理个人信用记录,形成(用户ID, 信用特征)键值对。

Reduce阶段:用这些特征训练模型,预测用户违约概率。



8.基因组学研究:


对大规模基因序列进行比对和变异检测。

Map阶段:将基因序列片段与参考基因组进行比对,输出匹配位置。

Reduce阶段:整合比对结果,确定变异位点。

 

相关实践学习
基于MaxCompute的热门话题分析
Apsara Clouder大数据专项技能认证配套课程:基于MaxCompute的热门话题分析
目录
相关文章
|
2月前
|
人工智能 Cloud Native 算法
拔俗云原生 AI 临床大数据平台:赋能医学科研的开发者实践
AI临床大数据科研平台依托阿里云、腾讯云,打通医疗数据孤岛,提供从数据治理到模型落地的全链路支持。通过联邦学习、弹性算力与安全合规技术,实现跨机构协作与高效训练,助力开发者提升科研效率,推动医学AI创新落地。(238字)
|
3月前
|
Java API 数据处理
Java新特性:使用Stream API重构你的数据处理
Java新特性:使用Stream API重构你的数据处理
|
3月前
|
Java 大数据 API
Java Stream API:现代集合处理与函数式编程
Java Stream API:现代集合处理与函数式编程
246 100
|
3月前
|
Java API 数据处理
Java Stream API:现代集合处理新方式
Java Stream API:现代集合处理新方式
279 101
|
3月前
|
并行计算 Java 大数据
Java Stream API:现代数据处理之道
Java Stream API:现代数据处理之道
246 101
|
3月前
|
安全 Java API
使用 Java 构建强大的 REST API 的四个基本技巧
本文结合探险领域案例,分享Java构建REST API的四大核心策略:统一资源命名、版本控制与自动化文档、安全防护及标准化异常处理,助力开发者打造易用、可维护、安全可靠的稳健API服务。
208 2
|
SQL JSON 分布式计算
23篇大数据系列(一)java基础知识全集(下)(2万字干货,建议收藏)
23篇大数据系列(一)java基础知识全集(下)(2万字干货,建议收藏)
23篇大数据系列(一)java基础知识全集(下)(2万字干货,建议收藏)
|
SQL JSON 分布式计算
23篇大数据系列(一)java基础知识全集(上)(2万字干货,建议收藏)
23篇大数据系列(一)java基础知识全集(2万字干货,建议收藏)
23篇大数据系列(一)java基础知识全集(上)(2万字干货,建议收藏)
|
2月前
|
JSON 网络协议 安全
【Java】(10)进程与线程的关系、Tread类;讲解基本线程安全、网络编程内容;JSON序列化与反序列化
几乎所有的操作系统都支持进程的概念,进程是处于运行过程中的程序,并且具有一定的独立功能,进程是系统进行资源分配和调度的一个独立单位一般而言,进程包含如下三个特征。独立性动态性并发性。
161 1
|
2月前
|
JSON 网络协议 安全
【Java基础】(1)进程与线程的关系、Tread类;讲解基本线程安全、网络编程内容;JSON序列化与反序列化
几乎所有的操作系统都支持进程的概念,进程是处于运行过程中的程序,并且具有一定的独立功能,进程是系统进行资源分配和调度的一个独立单位一般而言,进程包含如下三个特征。独立性动态性并发性。
180 1

热门文章

最新文章