人工智能平台PAI产品使用合集之在easy_rec中,将model_dir设置为oss地址时,oss相关配置需要加载在环境中,有完整的示例吗

本文涉及的产品
模型训练 PAI-DLC,5000CU*H 3个月
模型在线服务 PAI-EAS,A10/V100等 500元 1个月
交互式建模 PAI-DSW,每月250计算时 3个月
简介: 阿里云人工智能平台PAI是一个功能强大、易于使用的AI开发平台,旨在降低AI开发门槛,加速创新,助力企业和开发者高效构建、部署和管理人工智能应用。其中包含了一系列相互协同的产品与服务,共同构成一个完整的人工智能开发与应用生态系统。以下是对PAI产品使用合集的概述,涵盖数据处理、模型开发、训练加速、模型部署及管理等多个环节。

问题一:机器学习PAI easyRec 有maven依赖吗?


机器学习PAI easyRec 有maven依赖吗?


参考回答:

没有啊,这个是python库


关于本问题的更多回答可点击原文查看:

https://developer.aliyun.com/ask/580099



问题二:机器学习PAI easy_rec在dlc训练model_dir能设置为oss地址吗?


机器学习PAI easy_rec在dlc训练model_dir能设置为oss地址吗?


参考回答:

可以,可以将 model_dir 参数设置为 oss 地址。


关于本问题的更多回答可点击原文查看:

https://developer.aliyun.com/ask/582138



问题三:机器学习PAI easy_rec在dlc训练 model_dir设置为oss地址,oss相关配置需要加载在环境中还是直接配置在config中,,请给出完整示例?


机器学习PAI easy_rec在dlc训练 model_dir设置为oss地址,oss相关配置需要加载在环境中还是直接配置在config中,,请给出完整示例?


参考回答:

我认为答案是: 在easy_rec中,将model_dir设置为oss地址时,oss相关配置需要加载在环境中。以下是一个完整的示例:

引入相关库

from odps import options

from odps import ODPS

配置oss相关的环境变量

options['odps.oss.endpoint'] = 'your_oss_endpoint'

options['odps.oss.access_id'] = 'your_oss_access_id'

options['odps.oss.access_key'] = 'your_oss_access_key'

创建ODPS对象

odps = ODPS('your_project', 'your_access_id', 'your_access_key', endpoint='your_odps_endpoint')

设置model_dir为oss地址

model_dir = 'oss://your_bucket/model'

使用model_dir进行模型训练

...

其中,your_oss_endpoint、your_oss_access_id、your_oss_access_key、your_project、your_access_id、your_access_key、your_odps_endpoint、your_bucket需要根据实际情况进行替换。以上示例中,将oss相关配置加载在环境中,并将model_dir设置为oss地址,然后可以使用model_dir进行模型训练。


关于本问题的更多回答可点击原文查看:

https://developer.aliyun.com/ask/582140



问题四:机器学习PAI E ModuleNotFoundError: 这是哪个模块没装?


机器学习PAI E ModuleNotFoundError: No module named 'torch_blade._torch_blade'这是哪个模块没装?按照教程装不成功


参考回答:

应该是没有编译成功


关于本问题的更多回答可点击原文查看:

https://developer.aliyun.com/ask/582109



问题五:机器学习PAI dsw中怎么给jupyter安装插件呢?


机器学习PAI dsw中怎么给jupyter安装插件呢?


参考回答:

在机器学习PAI DSW中,您可以以插件化的形式来安装Jupyter的扩展插件。具体来说,您可以使用pip或conda命令来进行安装。如果您选择使用pip,可以在终端中输入pip install jupyter_contrib_nbextensions命令进行安装;而如果您更倾向于使用conda,那么您可以输入conda install -c conda-forge jupyter_contrib_nbextensions来进行安装。


关于本问题的更多回答可点击原文查看:

https://developer.aliyun.com/ask/577077

相关实践学习
借助OSS搭建在线教育视频课程分享网站
本教程介绍如何基于云服务器ECS和对象存储OSS,搭建一个在线教育视频课程分享网站。
相关文章
|
3月前
|
传感器 数据采集 机器学习/深度学习
人工智能与环境保护:智能监测与治理的新策略
【9月更文挑战第21天】人工智能在环境保护中的应用,为智能监测与治理提供了新的策略和方法。通过实时数据采集与分析、智能预警与应急响应、精准化决策支持等技术的应用,AI正在引领一场革命性的变革。未来,随着技术的不断发展和应用场景的拓展,AI将在环境保护中发挥更加重要的作用,助力我们构建更加绿色、可持续的未来。让我们携手共进,共同迎接一个更加美好的明天。
|
2月前
|
机器学习/深度学习 测试技术
阿里云入选Gartner数据科学和机器学习平台挑战者象限
Gartner® 正式发布了《数据科学与机器学习平台魔力象限》报告(Magic Quadrant™ for Data Science and Machine Learning Platforms),阿里云成为唯一一家入选该报告的中国厂商,被评为“挑战者”(Challengers)。
|
5月前
|
机器学习/深度学习 人工智能 Shell
人工智能平台PAI操作报错合集之在分布式训练过程中遇到报错,是什么原因
阿里云人工智能平台PAI是一个功能强大、易于使用的AI开发平台,旨在降低AI开发门槛,加速创新,助力企业和开发者高效构建、部署和管理人工智能应用。其中包含了一系列相互协同的产品与服务,共同构成一个完整的人工智能开发与应用生态系统。以下是对PAI产品使用合集的概述,涵盖数据处理、模型开发、训练加速、模型部署及管理等多个环节。
|
5月前
|
机器学习/深度学习 人工智能 数据处理
人工智能平台PAI操作报错合集之任务重启后出现模型拆分报错,该怎么办
阿里云人工智能平台PAI是一个功能强大、易于使用的AI开发平台,旨在降低AI开发门槛,加速创新,助力企业和开发者高效构建、部署和管理人工智能应用。其中包含了一系列相互协同的产品与服务,共同构成一个完整的人工智能开发与应用生态系统。以下是对PAI产品使用合集的概述,涵盖数据处理、模型开发、训练加速、模型部署及管理等多个环节。
|
2月前
|
机器学习/深度学习 人工智能 算法
机器学习【教育领域及其平台搭建】
机器学习【教育领域及其平台搭建】
51 7
|
3月前
|
人工智能 JSON 数据格式
RAG+Agent人工智能平台:RAGflow实现GraphRA知识库问答,打造极致多模态问答与AI编排流体验
【9月更文挑战第6天】RAG+Agent人工智能平台:RAGflow实现GraphRA知识库问答,打造极致多模态问答与AI编排流体验
RAG+Agent人工智能平台:RAGflow实现GraphRA知识库问答,打造极致多模态问答与AI编排流体验
|
3月前
|
机器学习/深度学习 人工智能 算法
【新闻文本分类识别系统】Python+卷积神经网络算法+人工智能+深度学习+计算机毕设项目+Django网页界面平台
文本分类识别系统。本系统使用Python作为主要开发语言,首先收集了10种中文文本数据集("体育类", "财经类", "房产类", "家居类", "教育类", "科技类", "时尚类", "时政类", "游戏类", "娱乐类"),然后基于TensorFlow搭建CNN卷积神经网络算法模型。通过对数据集进行多轮迭代训练,最后得到一个识别精度较高的模型,并保存为本地的h5格式。然后使用Django开发Web网页端操作界面,实现用户上传一段文本识别其所属的类别。
98 1
【新闻文本分类识别系统】Python+卷积神经网络算法+人工智能+深度学习+计算机毕设项目+Django网页界面平台
|
2月前
|
机器学习/深度学习 算法 PyTorch
【机器学习】大模型环境下的应用:计算机视觉的探索与实践
【机器学习】大模型环境下的应用:计算机视觉的探索与实践
63 1
|
3月前
|
机器学习/深度学习 人工智能 算法
【果蔬识别系统】Python+卷积神经网络算法+人工智能+深度学习+计算机毕设项目+Django网页界面平台
【果蔬识别系统】Python+卷积神经网络算法+人工智能+深度学习+计算机毕设项目+Django网页界面平台。果蔬识别系统,本系统使用Python作为主要开发语言,通过收集了12种常见的水果和蔬菜('土豆', '圣女果', '大白菜', '大葱', '梨', '胡萝卜', '芒果', '苹果', '西红柿', '韭菜', '香蕉', '黄瓜'),然后基于TensorFlow库搭建CNN卷积神经网络算法模型,然后对数据集进行训练,最后得到一个识别精度较高的算法模型,然后将其保存为h5格式的本地文件方便后期调用。再使用Django框架搭建Web网页平台操作界面,实现用户上传一张果蔬图片识别其名称。
61 0
【果蔬识别系统】Python+卷积神经网络算法+人工智能+深度学习+计算机毕设项目+Django网页界面平台
|
3月前
|
人工智能 自然语言处理 前端开发
基于ChatGPT开发人工智能服务平台
### 简介 ChatGPT 初期作为问答机器人,现已拓展出多种功能,如模拟面试及智能客服等。模拟面试功能涵盖个性化问题生成、实时反馈等;智能客服则提供全天候支持、多渠道服务等功能。借助人工智能技术,这些应用能显著提升面试准备效果及客户服务效率。 ### 智能平台的使用价值 通过自动化流程,帮助用户提升面试准备效果及提高客户服务效率。 ### 实现思路 1. **需求功能设计**:提问与接收回复。 2. **技术架构设计**:搭建整体框架。 3. **技术选型**:示例采用 `Flask + Template + HTML/CSS`。 4. **技术实现**:前端界面与后端服务实现。

相关产品

  • 人工智能平台 PAI