python 五种算法转置后翻转、层次旋转、递归分块、一次性旋转、环状替换 实现旋转图像【力扣题48】

简介: python 五种算法转置后翻转、层次旋转、递归分块、一次性旋转、环状替换 实现旋转图像【力扣题48】

作者介绍:10年大厂数据\经营分析经验,现任大厂数据部门负责人。

会一些的技术:数据分析、算法、SQL、大数据相关、python

欢迎加入社区:码上找工作

作者专栏每日更新:

LeetCode解锁1000题: 打怪升级之旅

python数据分析可视化:企业实战案例

备注说明:方便大家阅读,统一使用python,带必要注释,公众号 数据分析螺丝钉 一起打怪升级

题目描述

给定一个 n × n 的二维矩阵,代表一个图像,你需要将图像顺时针旋转 90 度。

你必须在 原地 旋转图像,这意味着你需要直接修改输入的二维矩阵。请不要使用另一个矩阵来旋转图像。

输入格式
  • matrix:一个二维整数数组,代表一个图像。
输出格式
  • 不需要返回任何结果,应当在原数组上修改,即原地旋转图像。

示例

示例 1
输入:matrix = [
  [1, 2, 3],
  [4, 5, 6],
  [7, 8, 9]
]
输出:[
  [7, 4, 1],
  [8, 5, 2],
  [9, 6, 3]
]

解释:该矩阵顺时针旋转 90 度后,矩阵第一行变为原矩阵的最后一列,第二行变为原矩阵的中间一列,第三行变为原矩阵的第一列,且都是从下到上的顺序。

示例 2
输入:matrix = [
  [ 5, 1, 9,11],
  [ 2, 4, 8,10],
  [13, 3, 6, 7],
  [15,14,12,16]
]
输出:[
  [15,13, 2, 5],
  [14, 3, 4, 1],
  [12, 6, 8, 9],
  [16, 7,10,11]
]

约束条件

  • matrix.length == n
  • matrix[i].length == n
  • 1 <= n <= 20
  • -1000 <= matrix[i][j] <= 1000

这个问题要求旋转矩阵而不使用额外的空间,即原地修改,这意味着算法需要特别注意操作的顺序和方式,以确保数据不会被错误覆盖。

方法一:转置后翻转

解题步骤
  1. 转置矩阵:将矩阵的行转换为列,即 matrix[i][j]matrix[j][i] 交换。
  2. 翻转每行:将每行的元素翻转,即首尾元素交换,实现顺时针旋转的效果。
完整的规范代码
def rotate(matrix):
    """
    通过转置矩阵后翻转每行来顺时针旋转图像
    :param matrix: List[List[int]], n x n 的二维矩阵
    :return: None
    """
    n = len(matrix)
    # 转置矩阵
    for i in range(n):
        for j in range(i + 1, n):
            matrix[i][j], matrix[j][i] = matrix[j][i], matrix[i][j]
    
    # 翻转每行
    for i in range(n):
        matrix[i].reverse()
# 示例调用
matrix_example = [[1,2,3],[4,5,6],[7,8,9]]
rotate(matrix_example)
print(matrix_example)  # 输出: [[7,4,1],[8,5,2],[9,6,3]]
算法分析
  • 时间复杂度:(O(n^2)),需要遍历矩阵两次。
  • 空间复杂度:(O(1)),原地修改矩阵,不需要额外空间。

方法二:层次旋转法

解题步骤
  1. 外层到内层:分层处理矩阵,从外层到内层逐层旋转。
  2. 四角替换:对于每一层,将四个角的元素依次旋转。
完整的规范代码
def rotate(matrix):
    """
    使用层次旋转法顺时针旋转图像
    :param matrix: List[List[int]], n x n 的二维矩阵
    :return: None
    """
    n = len(matrix)
    for i in range(n // 2):
        for j in range(i, n - i - 1):
            temp = matrix[i][j]
            matrix[i][j] = matrix[n-j-1][i]
            matrix[n-j-1][i] = matrix[n-i-1][n-j-1]
            matrix[n-i-1][n-j-1] = matrix[j][n-i-1]
            matrix[j][n-i-1] = temp
# 示例调用
matrix_example = [[5,1,9,11],[2,4,8,10],[13,3,6,7],[15,14,12,16]]
rotate(matrix_example)
print(matrix_example)  # 输出: [[15,13,2,5],[14,3,4,1],[12,6,8,9],[16,7,10,11]]
算法分析
  • 时间复杂度:(O(n^2)),虽然只遍历半个矩阵,但仍然是平方级别。
  • 空间复杂度:(O(1)),原地修改,无需额外空间。

方法三:递归分块法

解题步骤
  1. 递归分块:将矩阵视为四块小矩阵,递归地进行旋转。
  2. 递归基:当矩阵缩小到1x1或2x2时,直接进行手动旋转。
完整的规范代码
def rotate(matrix):
    """
    使用递归分块法顺时针旋转图像
    :param matrix: List[List[int]], n x n 的二维矩阵
    :return: None
    """
    def rotate_submatrix(matrix, row, col, size):
        if size <= 1:
            return
        for i in range(size - 1):
            tmp = matrix[row][col + i]
            matrix[row][col + i] = matrix[row + size - 1 - i][col]
            matrix[row + size - 1 - i][col] = matrix[row + size - 1][col + size - 1 - i]
            matrix[row + size - 1][col + size - 1 - i] = matrix[row + i][col + size - 1]
            matrix[row + i][col + size - 1] = tmp
        rotate_submatrix(matrix, row + 1, col + 1, size - 2)
    rotate_submatrix(matrix, 0, 0, len(matrix))
# 示例调用
matrix_example = [[1,2,3],[4,5,6],[7,8,9]]
rotate(matrix_example)
print(matrix_example)  # 输出: [[7,4,1],[8,5,2],[9,6,3]]
算法分析
  • 时间复杂度:(O(n^2)),每个元素基本上都被处理一次,尽管是通过递归进行的。
  • 空间复杂度:(O(n)),递归深度最大可能为 (n/2),主要取决于矩阵的大小。

方法四:一次性旋转法

解题步骤
  1. 单次操作:直接计算每个元素旋转后的位置,将所有元素一次性放到正确位置上。
  2. 额外空间:使用额外的同样大小的矩阵来进行位置计算和值存储。
完整的规范代码
def rotate(matrix):
    """
    使用一次性旋转法顺时针旋转图像,需要额外空间
    :param matrix: List[List[int]], n x n 的二维矩阵
    :return: None
    """
    n = len(matrix)
    new_matrix = [[0] * n for _ in range(n)]
    for i in range(n):
        for j in range(n):
            new_matrix[j][n-i-1] = matrix[i][j]
    for i in range(n):
        for j in range(n):
            matrix[i][j] = new_matrix[i][j]
# 示例调用
matrix_example = [[5,1,9,11],[2,4,8,10],[13,3,6,7],[15,14,12,16]]
rotate(matrix_example)
print(matrix_example)  # 输出: [[15,13,2,5],[14,3,4,1],[12,6,8,9],[16,7,10,11]]
算法分析
  • 时间复杂度:(O(n^2)),遍历一次所有元素。
  • 空间复杂度:(O(n^2)),使用了额外的矩阵来存储旋转结果。

方法五:环状替换

解题步骤
  1. 外圈到内圈:分层处理矩阵,从外层到内层逐层旋转,每一层视为一个环。
  2. 环内旋转:每个元素按环进行替换,每四个元素为一组进行位置交换。
完整的规范代码
def rotate(matrix):
    """
    使用环状替换顺时针旋转图像
    :param matrix: List[List[int]], n x n 的二维矩阵
    :return: None
    """
    n = len(matrix)
    layers = n // 2
    for layer in range(layers):
        first, last = layer, n - layer - 1
        for i in range(first, last):
            offset = i - first
            top = matrix[first][i]
            matrix[first][i] = matrix[last-offset][first]
            matrix[last-offset][first] = matrix[last][last-offset]
            matrix[last][last-offset] = matrix[i][last]
            matrix[i][last] = top
# 示例调用
matrix_example = [[1,2,3],[4,5,6],[7,8,9]]
rotate(matrix_example)
print(matrix_example)  # 输出: [[7,4,1],[8,5,2],[9,6,3]]
算法分析
  • 时间复杂度:(O(n^2)),每个元素基本上都被处理一次。
  • 空间复杂度:(O(1)),原地修改矩阵,不使用额外空间。

不同算法的优劣势对比

特征 方法一:转置后翻转 方法二:层次旋转法 方法三:递归分块法 方法四:一次性旋转法 方法五:环状替换
时间复杂度 (O(n^2)) (O(n^2)) (O(n^2)) (O(n^2)) (O(n^2))
空间复杂度 (O(1)) (O(1)) (O(n)) (O(n^2)) (O(1))
优势 - 简单实用
- 快速有效
- 直观操作
- 无需额外空间
- 递归清晰
- 易于理解
- 计算直接
- 易于实现
- 高效
- 不需要额外空间
劣势 - 需要两步处理 - 需要精确控制边界 - 需要额外空间
- 递归复杂
- 空间成本高 - 需要精确控制层和边界

在选择合适的方法时,应考虑实际的需求和问题规模。例如,对于需要在有限空间内操作的场景,环状替换和层次旋转法是最优的选择;而对于能够接受一定空间换时间的场景,则可以考虑一次性旋转法或递归分块法,这些方法提供了不同的视角和实现方式,适合不同的应用环境和性能要求。


欢迎关注微信公众号 数据分析螺丝钉

目录
打赏
0
2
2
1
68
分享
相关文章
如何在Python下实现摄像头|屏幕|AI视觉算法数据的RTMP直播推送
本文详细讲解了在Python环境下使用大牛直播SDK实现RTMP推流的过程。从技术背景到代码实现,涵盖Python生态优势、AI视觉算法应用、RTMP稳定性及跨平台支持等内容。通过丰富功能如音频编码、视频编码、实时预览等,结合实际代码示例,为开发者提供完整指南。同时探讨C接口转换Python时的注意事项,包括数据类型映射、内存管理、回调函数等关键点。最终总结Python在RTMP推流与AI视觉算法结合中的重要性与前景,为行业应用带来便利与革新。
基于 Python 哈希表算法的员工上网管理策略研究
于当下数字化办公环境而言,员工上网管理已成为企业运营管理的关键环节。企业有必要对员工的网络访问行为予以监控,以此确保信息安全并提升工作效率。在处理员工上网管理相关数据时,适宜的数据结构与算法起着举足轻重的作用。本文将深入探究哈希表这一数据结构在员工上网管理场景中的应用,并借助 Python 代码示例展开详尽阐述。
31 3
Python下的毫秒级延迟RTSP|RTMP播放器技术探究和AI视觉算法对接
本文深入解析了基于Python实现的RTSP/RTMP播放器,探讨其代码结构、实现原理及优化策略。播放器通过大牛直播SDK提供的接口,支持低延迟播放,适用于实时监控、视频会议和智能分析等场景。文章详细介绍了播放控制、硬件解码、录像与截图功能,并分析了回调机制和UI设计。此外,还讨论了性能优化方法(如硬件加速、异步处理)和功能扩展(如音量调节、多格式支持)。针对AI视觉算法对接,文章提供了YUV/RGB数据处理示例,便于开发者在Python环境下进行算法集成。最终,播放器凭借低延迟、高兼容性和灵活扩展性,为实时交互场景提供了高效解决方案。
探秘文件共享服务之哈希表助力 Python 算法实现
在数字化时代,文件共享服务不可或缺。哈希表(散列表)通过键值对存储数据,利用哈希函数将键映射到特定位置,极大提升文件上传、下载和搜索效率。例如,在大型文件共享平台中,文件名等信息作为键,物理地址作为值存入哈希表,用户检索时快速定位文件,减少遍历时间。此外,哈希表还用于文件一致性校验,确保传输文件未被篡改。以Python代码示例展示基于哈希表的文件索引实现,模拟文件共享服务的文件索引构建与检索功能。哈希表及其分布式变体如一致性哈希算法,保障文件均匀分布和负载均衡,持续优化文件共享服务性能。
|
24天前
|
公司电脑网络监控场景下 Python 广度优先搜索算法的深度剖析
在数字化办公时代,公司电脑网络监控至关重要。广度优先搜索(BFS)算法在构建网络拓扑、检测安全威胁和优化资源分配方面发挥重要作用。通过Python代码示例展示其应用流程,助力企业提升网络安全与效率。未来,更多创新算法将融入该领域,保障企业数字化发展。
42 10
|
25天前
|
基于 Python 广度优先搜索算法的监控局域网电脑研究
随着局域网规模扩大,企业对高效监控计算机的需求增加。广度优先搜索(BFS)算法凭借其层次化遍历特性,在Python中可用于实现局域网内的计算机设备信息收集、网络连接状态监测及安全漏洞扫描,确保网络安全与稳定运行。通过合理选择数据结构与算法,BFS显著提升了监控效能,助力企业实现智能化的网络管理。
28 7
从集思录可转债数据探秘:Python与C++实现的移动平均算法应用
本文探讨了如何利用移动平均算法分析集思录提供的可转债数据,帮助投资者把握价格趋势。通过Python和C++两种编程语言实现简单移动平均(SMA),展示了数据处理的具体方法。Python代码借助`pandas`库轻松计算5日SMA,而C++代码则通过高效的数据处理展示了SMA的计算过程。集思录平台提供了详尽且及时的可转债数据,助力投资者结合算法与社区讨论,做出更明智的投资决策。掌握这些工具和技术,有助于在复杂多变的金融市场中挖掘更多价值。
63 12
基于 Python 的布隆过滤器算法在内网行为管理中的应用探究
在复杂多变的网络环境中,内网行为管理至关重要。本文介绍布隆过滤器(Bloom Filter),一种高效的空间节省型概率数据结构,用于判断元素是否存在于集合中。通过多个哈希函数映射到位数组,实现快速访问控制。Python代码示例展示了如何构建和使用布隆过滤器,有效提升企业内网安全性和资源管理效率。
53 9
解锁文档管理系统高效检索奥秘:Python 哈希表算法探究
在数字化时代,文档管理系统犹如知识宝库,支撑各行各业高效运转。哈希表作为核心数据结构,通过哈希函数将数据映射为固定长度的哈希值,实现快速查找与定位。本文聚焦哈希表在文档管理中的应用,以Python代码示例展示其高效检索特性,并探讨哈希冲突解决策略,助力构建智能化文档管理系统。
探究办公室电脑怎么共享文件的 Python 算法
在数字化办公环境中,高效文件共享是提升工作效率的关键。本文聚焦于使用Python实现办公室电脑文件共享的算法,涵盖需求分析、基础实现及优化拓展。通过socket编程和文件流操作,实现文件传输,并探讨多线程、权限管理和文件索引等优化措施,确保文件共享的安全性和便捷性,助力现代办公协同。

热门文章

最新文章