python 五种算法转置后翻转、层次旋转、递归分块、一次性旋转、环状替换 实现旋转图像【力扣题48】

简介: python 五种算法转置后翻转、层次旋转、递归分块、一次性旋转、环状替换 实现旋转图像【力扣题48】

作者介绍:10年大厂数据\经营分析经验,现任大厂数据部门负责人。

会一些的技术:数据分析、算法、SQL、大数据相关、python

欢迎加入社区:码上找工作

作者专栏每日更新:

LeetCode解锁1000题: 打怪升级之旅

python数据分析可视化:企业实战案例

备注说明:方便大家阅读,统一使用python,带必要注释,公众号 数据分析螺丝钉 一起打怪升级

题目描述

给定一个 n × n 的二维矩阵,代表一个图像,你需要将图像顺时针旋转 90 度。

你必须在 原地 旋转图像,这意味着你需要直接修改输入的二维矩阵。请不要使用另一个矩阵来旋转图像。

输入格式
  • matrix:一个二维整数数组,代表一个图像。
输出格式
  • 不需要返回任何结果,应当在原数组上修改,即原地旋转图像。

示例

示例 1
输入:matrix = [
  [1, 2, 3],
  [4, 5, 6],
  [7, 8, 9]
]
输出:[
  [7, 4, 1],
  [8, 5, 2],
  [9, 6, 3]
]

解释:该矩阵顺时针旋转 90 度后,矩阵第一行变为原矩阵的最后一列,第二行变为原矩阵的中间一列,第三行变为原矩阵的第一列,且都是从下到上的顺序。

示例 2
输入:matrix = [
  [ 5, 1, 9,11],
  [ 2, 4, 8,10],
  [13, 3, 6, 7],
  [15,14,12,16]
]
输出:[
  [15,13, 2, 5],
  [14, 3, 4, 1],
  [12, 6, 8, 9],
  [16, 7,10,11]
]

约束条件

  • matrix.length == n
  • matrix[i].length == n
  • 1 <= n <= 20
  • -1000 <= matrix[i][j] <= 1000

这个问题要求旋转矩阵而不使用额外的空间,即原地修改,这意味着算法需要特别注意操作的顺序和方式,以确保数据不会被错误覆盖。

方法一:转置后翻转

解题步骤
  1. 转置矩阵:将矩阵的行转换为列,即 matrix[i][j]matrix[j][i] 交换。
  2. 翻转每行:将每行的元素翻转,即首尾元素交换,实现顺时针旋转的效果。
完整的规范代码
def rotate(matrix):
    """
    通过转置矩阵后翻转每行来顺时针旋转图像
    :param matrix: List[List[int]], n x n 的二维矩阵
    :return: None
    """
    n = len(matrix)
    # 转置矩阵
    for i in range(n):
        for j in range(i + 1, n):
            matrix[i][j], matrix[j][i] = matrix[j][i], matrix[i][j]
    
    # 翻转每行
    for i in range(n):
        matrix[i].reverse()
# 示例调用
matrix_example = [[1,2,3],[4,5,6],[7,8,9]]
rotate(matrix_example)
print(matrix_example)  # 输出: [[7,4,1],[8,5,2],[9,6,3]]
算法分析
  • 时间复杂度:(O(n^2)),需要遍历矩阵两次。
  • 空间复杂度:(O(1)),原地修改矩阵,不需要额外空间。

方法二:层次旋转法

解题步骤
  1. 外层到内层:分层处理矩阵,从外层到内层逐层旋转。
  2. 四角替换:对于每一层,将四个角的元素依次旋转。
完整的规范代码
def rotate(matrix):
    """
    使用层次旋转法顺时针旋转图像
    :param matrix: List[List[int]], n x n 的二维矩阵
    :return: None
    """
    n = len(matrix)
    for i in range(n // 2):
        for j in range(i, n - i - 1):
            temp = matrix[i][j]
            matrix[i][j] = matrix[n-j-1][i]
            matrix[n-j-1][i] = matrix[n-i-1][n-j-1]
            matrix[n-i-1][n-j-1] = matrix[j][n-i-1]
            matrix[j][n-i-1] = temp
# 示例调用
matrix_example = [[5,1,9,11],[2,4,8,10],[13,3,6,7],[15,14,12,16]]
rotate(matrix_example)
print(matrix_example)  # 输出: [[15,13,2,5],[14,3,4,1],[12,6,8,9],[16,7,10,11]]
算法分析
  • 时间复杂度:(O(n^2)),虽然只遍历半个矩阵,但仍然是平方级别。
  • 空间复杂度:(O(1)),原地修改,无需额外空间。

方法三:递归分块法

解题步骤
  1. 递归分块:将矩阵视为四块小矩阵,递归地进行旋转。
  2. 递归基:当矩阵缩小到1x1或2x2时,直接进行手动旋转。
完整的规范代码
def rotate(matrix):
    """
    使用递归分块法顺时针旋转图像
    :param matrix: List[List[int]], n x n 的二维矩阵
    :return: None
    """
    def rotate_submatrix(matrix, row, col, size):
        if size <= 1:
            return
        for i in range(size - 1):
            tmp = matrix[row][col + i]
            matrix[row][col + i] = matrix[row + size - 1 - i][col]
            matrix[row + size - 1 - i][col] = matrix[row + size - 1][col + size - 1 - i]
            matrix[row + size - 1][col + size - 1 - i] = matrix[row + i][col + size - 1]
            matrix[row + i][col + size - 1] = tmp
        rotate_submatrix(matrix, row + 1, col + 1, size - 2)
    rotate_submatrix(matrix, 0, 0, len(matrix))
# 示例调用
matrix_example = [[1,2,3],[4,5,6],[7,8,9]]
rotate(matrix_example)
print(matrix_example)  # 输出: [[7,4,1],[8,5,2],[9,6,3]]
算法分析
  • 时间复杂度:(O(n^2)),每个元素基本上都被处理一次,尽管是通过递归进行的。
  • 空间复杂度:(O(n)),递归深度最大可能为 (n/2),主要取决于矩阵的大小。

方法四:一次性旋转法

解题步骤
  1. 单次操作:直接计算每个元素旋转后的位置,将所有元素一次性放到正确位置上。
  2. 额外空间:使用额外的同样大小的矩阵来进行位置计算和值存储。
完整的规范代码
def rotate(matrix):
    """
    使用一次性旋转法顺时针旋转图像,需要额外空间
    :param matrix: List[List[int]], n x n 的二维矩阵
    :return: None
    """
    n = len(matrix)
    new_matrix = [[0] * n for _ in range(n)]
    for i in range(n):
        for j in range(n):
            new_matrix[j][n-i-1] = matrix[i][j]
    for i in range(n):
        for j in range(n):
            matrix[i][j] = new_matrix[i][j]
# 示例调用
matrix_example = [[5,1,9,11],[2,4,8,10],[13,3,6,7],[15,14,12,16]]
rotate(matrix_example)
print(matrix_example)  # 输出: [[15,13,2,5],[14,3,4,1],[12,6,8,9],[16,7,10,11]]
算法分析
  • 时间复杂度:(O(n^2)),遍历一次所有元素。
  • 空间复杂度:(O(n^2)),使用了额外的矩阵来存储旋转结果。

方法五:环状替换

解题步骤
  1. 外圈到内圈:分层处理矩阵,从外层到内层逐层旋转,每一层视为一个环。
  2. 环内旋转:每个元素按环进行替换,每四个元素为一组进行位置交换。
完整的规范代码
def rotate(matrix):
    """
    使用环状替换顺时针旋转图像
    :param matrix: List[List[int]], n x n 的二维矩阵
    :return: None
    """
    n = len(matrix)
    layers = n // 2
    for layer in range(layers):
        first, last = layer, n - layer - 1
        for i in range(first, last):
            offset = i - first
            top = matrix[first][i]
            matrix[first][i] = matrix[last-offset][first]
            matrix[last-offset][first] = matrix[last][last-offset]
            matrix[last][last-offset] = matrix[i][last]
            matrix[i][last] = top
# 示例调用
matrix_example = [[1,2,3],[4,5,6],[7,8,9]]
rotate(matrix_example)
print(matrix_example)  # 输出: [[7,4,1],[8,5,2],[9,6,3]]
算法分析
  • 时间复杂度:(O(n^2)),每个元素基本上都被处理一次。
  • 空间复杂度:(O(1)),原地修改矩阵,不使用额外空间。

不同算法的优劣势对比

特征 方法一:转置后翻转 方法二:层次旋转法 方法三:递归分块法 方法四:一次性旋转法 方法五:环状替换
时间复杂度 (O(n^2)) (O(n^2)) (O(n^2)) (O(n^2)) (O(n^2))
空间复杂度 (O(1)) (O(1)) (O(n)) (O(n^2)) (O(1))
优势 - 简单实用
- 快速有效
- 直观操作
- 无需额外空间
- 递归清晰
- 易于理解
- 计算直接
- 易于实现
- 高效
- 不需要额外空间
劣势 - 需要两步处理 - 需要精确控制边界 - 需要额外空间
- 递归复杂
- 空间成本高 - 需要精确控制层和边界

在选择合适的方法时,应考虑实际的需求和问题规模。例如,对于需要在有限空间内操作的场景,环状替换和层次旋转法是最优的选择;而对于能够接受一定空间换时间的场景,则可以考虑一次性旋转法或递归分块法,这些方法提供了不同的视角和实现方式,适合不同的应用环境和性能要求。


欢迎关注微信公众号 数据分析螺丝钉

相关文章
|
2月前
|
存储 Java 数据处理
(numpy)Python做数据处理必备框架!(一):认识numpy;从概念层面开始学习ndarray数组:形状、数组转置、数值范围、矩阵...
Numpy是什么? numpy是Python中科学计算的基础包。 它是一个Python库,提供多维数组对象、各种派生对象(例如掩码数组和矩阵)以及用于对数组进行快速操作的各种方法,包括数学、逻辑、形状操作、排序、选择、I/0 、离散傅里叶变换、基本线性代数、基本统计运算、随机模拟等等。 Numpy能做什么? numpy的部分功能如下: ndarray,一个具有矢量算术运算和复杂广播能力的快速且节省空间的多维数组 用于对整组数据进行快速运算的标准数学函数(无需编写循环)。 用于读写磁盘数据的工具以及用于操作内存映射文件的工具。 线性代数、随机数生成以及傅里叶变换功能。 用于集成由C、C++
316 1
|
2月前
|
存储 人工智能 算法
从零掌握贪心算法Java版:LeetCode 10题实战解析(上)
在算法世界里,有一种思想如同生活中的"见好就收"——每次做出当前看来最优的选择,寄希望于通过局部最优达成全局最优。这种思想就是贪心算法,它以其简洁高效的特点,成为解决最优问题的利器。今天我们就来系统学习贪心算法的核心思想,并通过10道LeetCode经典题目实战演练,带你掌握这种"步步为营"的解题思维。
|
10月前
|
存储 算法 Java
算法系列之递归反转单链表
递归反转链表的基本思路是将当前节点的next指针指向前一个节点,然后递归地对下一个节点进行同样的操作。递归的核心思想是将问题分解为更小的子问题,直到达到基本情况(通常是链表末尾)。
314 5
算法系列之递归反转单链表
|
算法
Leetcode 初级算法 --- 数组篇
Leetcode 初级算法 --- 数组篇
143 0
|
算法 数据安全/隐私保护 开发者
马特赛特旋转算法:Python的随机模块背后的力量
马特赛特旋转算法是Python `random`模块的核心,由松本真和西村拓士于1997年提出。它基于线性反馈移位寄存器,具有超长周期和高维均匀性,适用于模拟、密码学等领域。Python中通过设置种子值初始化状态数组,经状态更新和输出提取生成随机数,代码简单高效。
324 63
|
存储 算法 Java
leetcode算法题-有效的括号(简单)
【11月更文挑战第5天】本文介绍了 LeetCode 上“有效的括号”这道题的解法。题目要求判断一个只包含括号字符的字符串是否有效。有效字符串需满足左括号必须用相同类型的右括号闭合,并且左括号必须以正确的顺序闭合。解题思路是使用栈数据结构,遍历字符串时将左括号压入栈中,遇到右括号时检查栈顶元素是否匹配。最后根据栈是否为空来判断字符串中的括号是否有效。示例代码包括 Python 和 Java 版本。
286 4
|
算法 Python
在Python编程中,分治法、贪心算法和动态规划是三种重要的算法。分治法通过将大问题分解为小问题,递归解决后合并结果
在Python编程中,分治法、贪心算法和动态规划是三种重要的算法。分治法通过将大问题分解为小问题,递归解决后合并结果;贪心算法在每一步选择局部最优解,追求全局最优;动态规划通过保存子问题的解,避免重复计算,确保全局最优。这三种算法各具特色,适用于不同类型的问题,合理选择能显著提升编程效率。
261 2
|
Python
Python对PDF文件页面的旋转和切割
Python对PDF文件页面的旋转和切割
284 3
|
算法 搜索推荐 Shell
数据结构与算法学习十二:希尔排序、快速排序(递归、好理解)、归并排序(递归、难理解)
这篇文章介绍了希尔排序、快速排序和归并排序三种排序算法的基本概念、实现思路、代码实现及其测试结果。
431 1
|
机器学习/深度学习
Leetcode第48题(旋转图像)
这篇文章介绍了LeetCode第48题“旋转图像”的解题方法,通过原地修改二维矩阵实现图像的顺时针旋转90度。
122 0
Leetcode第48题(旋转图像)

热门文章

最新文章

推荐镜像

更多