离线数仓(四)【数仓数据同步策略】(1)

本文涉及的产品
实时计算 Flink 版,5000CU*H 3个月
云原生数据仓库AnalyticDB MySQL版,基础版 8ACU 100GB 1个月
日志服务 SLS,月写入数据量 50GB 1个月
简介: 离线数仓(四)【数仓数据同步策略】

前言

       今天来把数仓数据同步解决掉,前面我们已经把日志数据到 Kafka 的通道打通了。

1、实时数仓数据同步

       关于实时数仓,我们的 Flink 直接去 Kafka 读取即可,我们在学习 Flink 的时候也知道 Flink 提供了 Kafka Source,所以这里不需要再去添加什么额外的配置。

2、离线数仓数据同步

       Flink 可以从 Kafka 中读取数据,可是 Hive 不行啊,Hive 是从 Hadoop HDFS 中读取数据,所以的离线数仓需要进行一些配置。

2.1、用户行为日志数据同步

2.1.1、数据通道选择

       用户行为数据由 Flume 从 Kafka 直接同步到 HDFS,由于离线数仓采用 Hive 的分区表按天统计,所以目标路径要包含一层日期。

       这里,我们的 hive 分区表需要按天分区,那就需要我们 Flume 从 Kafka 读取到的数据包含 Event Header 信息(hdfs sink 默认就是按照 event header 中的 timestamp 来落盘的),但是我们上游把用户行为日志传输到 Kafka Channel 的时候,我们设置了 parseAsFlumeEvent=false,这就导致存储在 Kafka Channel 中的日志只有 Event Body,没有 Event Header。应该怎么把 Kafka Channel 中的数据读取写入到 HDFS 而且还能够给日志数据增加一个 header,我们有两种选择方案:

       1. 如果我们选择了 Kafka Channel 做数据源(我们之前说 Kfaka Channel 一共有 3 种结构:source -> kafka channel 、source -> kafka channel -> sink、kafka channel -> sink),选择了 kafka channel -> sink 结构的话,kafka channel 自己会封装一个 header 发送给 sink,但是这个 header 没有时间信息(timestamp),Event Body 中也可以有时间信息(要求我们日志时产生给每一条日志添加时间信息),但是我们不可以在 kafka channel 和 hdfs sink 之间设置拦截器去提取 body 中的时间信息(因为自定义拦截器只能在 source 和 channel 之间使用),所以这种结构无法实现。

       2. 上一种方案如果可以实现的话,我们就省去了 source 读取,可惜上一种结构无法实现,除非把上游的 parseAsFlumeEvent 设置为 true 。所以我们只能再开一个完整的 flume 作业去 kafka 读取,即 kafak source -> file channel -> hdfs sink。

2.1.2 日志消费Flume配置概述

       按照规划,该 Flume 需将 Kafka 中 topic_log 的数据发往 HDFS。并且对每天产生的用户行为日志进行区分,将不同天的数据发往HDFS不同天的路径。

       这里我们选择Kafka Source、File Channel(数据比较重要的话一般都用 file channel)、HDFS Sink。

2.1.3、Flume 配置文件

# 定义组件
a1.sources = r1
a1.channels = c1
a1.sinks = k1
 
# 配置sources
a1.sources.r1.channels = c1
a1.sources.r1.type = org.apache.flume.source.kafka.KafkaSource
a1.sources.r1.kafka.bootstrap = hadoop102:9092,hadoop103:9092,hadoop104:9092
a1.sources.r1.kafka.topics = topic_log
a1.sources.r1.kafka.consumer.group.id = topic_log
a1.sources.r1.batchSize = 2000
a1.sources.r1.batchDurationMillis = 1000
a1.sources.r1.interceptors = i1
a1.sources.r1.interceptors.i1.type = com.lyh.gmall.interceptor.TimestampInterceptor$Builder
 
# 配置channels
a1.channels.c1.type = file
a1.channels.c1.checkpointDir = /opt/module/flume/checkpoint/behavior1
a1.channels.c1.useDualCheckpoints = false
a1.channels.c1.dataDirs = /opt/module/flume/checkpoint/behavior1
a1.channels.c1.maxFileSize = 2146435071
a1.channels.c1.capacity = 1000000
a1.channels.c1.keep-alive = 3
 
# 配置 sinks
a1.sinks.k1.type = hdfs
a1.sinks.k1.hdfs.path = /origin_data/gmall/log/topic_log/%Y-%m-%d
a1.sinks.k1.hdfs.filePrefix = log
a1.sinks.k1.hdfs.round = false
 
a1.sinks.k1.hdfs.rollInterval = 10
a1.sinks.k1.hdfs.rollSize = 134217728
a1.sinks.k1.hdfs.rollCount = 0
 
#组装
a1.sources.r1.channels = c1
a1.sinks.k1.channel = c1

kafka source 配置:

  • 我们知道,flume 每发送一次数据需要满足的条件是数据量达到 batchSize 条,或者时间达到 batchDurationMillis 。所以这里 batchDurationMillis  的配置尽量和系统达到 batchSize 的时间相近。比如每 2s 生成 2000 条的数据,那我们这里的 batchDurationMillis 最好就配置为 2000
  • kafka.topics 和 kafka.topics.regex 这两个配置虽然都被加粗,但是只需要配置一个即可。
  • kafka.consumer.group.id(默认为 flume),这里我们尽量配置 kafka 消费者组和业务名一样,因为我们实际项目中可能会有很多业务,如果这几个业务都需要消费这个 topic,但是如果不配置消费者组id,那么这些业务的消费者就会默认被分配到一个消费者组(flume 组),而一个 topic 的一个分区只能被一个消费者组的一个消费者所消费(我们这里的主题 topic_log 并只有一个分区),这样的话,只有一个业务的消费者可以消费到,而别的业务的消费者消费不到。

file channel 配置:

  • checkpointDir:flume 的 file channel 有一个索引机制,它会把读取到的索引保存到内存当中去,但是防止数据丢失,还会再备份一次,这里就是配置备份的路径。
  • useDualCheckpoints(默认为 false):表示是否开启二次备份。因为一次备份即使保存在磁盘,还是有出问题的可能,如果配置这个参数为 true 则必须配置参数 backupCheckpointDir
  • backupCheckpointDir:这个参数就是配置二次备份的地址。
  • dataDirs:flume 的多目录存储,可以把数据存储在服务器的多个磁盘上
  • maxFileSize:我们的 file channel 是要写入文件的,这里配置的是这个文件的最大大小
  • capacity:file channel 容纳数据条数的限制,默认最多 100w 条
  • keep-alive:我们的 file channel 中的数据如果满了的时候,source 是写不进去的,这就需要回滚,还需要 kafka source 再从 kafka 去读一次,这样条浪费性能了。这个参数的作用是等一会,等到 channel 腾出一定空间之后再写进去。

hdfs sink 配置:

  • hdfs.path:我们的 hdfs 保存路径中包含 %Y-%m-%d ,这意味这这个文件夹中保存的是一天的数据内容,如果我们有要求保存几个小时的内容,就需要设置 round 参数。
  • round(默认是 false):flume 做的是离线的数据传输,我们的日志会每隔一定时间进行落盘。要精确到小时分钟或秒的话,就需要设置 roundValue 和 roundUnit 参数。比如每 6 个小时进行一次落盘的话,我们首先把路径改为 %Y-%m-%d/%h ,然后 roundValue 设置为 6,roundUnit 设置为 hour。
  • roundValue:时间值
  • roundUnit:时间单位
  • rollInterval:hdfs 数据块滚动间隔(默认是 30s,单位是秒),同样我们最好设置这个采纳数的时间刚好差不多生成一个块大小(128MB)
  • rollSize:基于文件的大小进行滚动(一般我们配置为 134217728 也就是 128MB
  • rollCount:基于 event 的条数进行滚动(一般设置为 0,因为用数据条数不太好控制文件的大小

注意:rollInterval、rollSize、rollCount 如果都设置为 0 则代表该配置参数不生效。配置不当很容易造成大量小文件问题(危害:hdfs中一个文件在namenode中占用 150kb、一个文件会生成一个 map task )。

1. 数据漂移问题

当我们有数据比如在 23:59:59 经过 3s 才能发送到 kafka source,这时 kafka source 会在 event header 中封装一个 timestamp 信息,但是这时封装的 timestamp 已经到第二天了。

所以解决的办法就是,利用 flume 的自定义拦截器去把 kafka source 中 event body 的时间信息读取出来,封装到 header 当中去,这样就不会造成落盘错误了:

2. 编写拦截器
package com.lyh.gmall.interceptor;
 
import com.alibaba.fastjson.JSONObject;
import org.apache.flume.Context;
import org.apache.flume.Event;
import org.apache.flume.interceptor.Interceptor;
 
import java.nio.charset.StandardCharsets;
import java.util.List;
import java.util.Map;
 
public class TimestampInterceptor implements Interceptor {
 
    @Override
    public void initialize() {
 
    }
 
    @Override
    public Event intercept(Event event) {
        // 1. 获取 header 和 body 中的数据
        Map<String, String> headers = event.getHeaders();
        String log = new String(event.getBody(), StandardCharsets.UTF_8);
 
        // 2. 解析 log(json) 中的 ts 字段
        String ts = JSONObject.parseObject(log).getString("ts");
 
        // 3. 把解析出来的 ts 值放到 header 中
        headers.put("timestamp",ts);
 
        return event;
    }
 
    @Override
    public List<Event> intercept(List<Event> list) {
        for (Event event : list) {
            intercept(event);
        }
        return list;
    }
 
    @Override
    public void close() {
 
    }
 
    public static class Builder implements Interceptor.Builder {
 
        @Override
        public Interceptor build() {
            return new TimestampInterceptor();
        }
 
        @Override
        public void configure(Context context) {
 
        }
    }
}

完了重新打包到 hadoop104 下 flume 的 lib 目录下

2.1.4、日志消费测试

1. 启动 Zookeeper、Kafka
2. 启动hadoop102的用户日志采集脚本
f1.sh start

这样我们的用户行为日志就被 flume 采集到了 kafka

3. 在 hadoop104 从kafka 采集日志到 hdfs
bin/flume-ng agent -n a1 -c conf/ -f job/warehouse/kafka_to_hdfs_log.conf -Dflume.root.logger=INFO,console
4. 模拟数据生成
mklog.sh
5. 测试结果

可以看到,用户行为日志被成功上传到了 hdfs。

2.1.5、日志启停脚本

我们在 hadoop102 编写一个脚本 f2.sh:

#!/bin/bash
 
case $1 in
"start")
        echo " --------启动 hadoop104 日志数据flume-------"
        ssh hadoop104 "nohup /opt/module/flume-1.9.0/bin/flume-ng agent -n a1 -c /opt/module/flume-1.9.0/conf -f /opt/module/flume-1.9.0/job/warehouse/kafka_to_hdfs_log.conf >/dev/null 2>&1 &"
;;
"stop")
 
        echo " --------停止 hadoop104 日志数据flume-------"
        ssh hadoop104 "ps -ef | grep kafka_to_hdfs_log | grep -v grep |awk '{print \$2}' | xargs -n1 kill"
;;
esac

2.2、业务日志数据同步

       对离线数仓来说,业务数据一般都是按天来进行同步的;但对实时数仓来说,来一条业务数据就必须马上同步。所以对于离线数仓,我们可以不使用 MaxWell ,而是通过 DataX 每天全量采集到数仓。

2.2.1 数据同步策略概述

       业务数据是数据仓库的重要数据来源,我们需要每日定时从业务数据库中抽取数据,传输到数据仓库中,之后再对数据进行分析统计。

       为保证统计结果的正确性,需要保证数据仓库中的数据与业务数据库是同步的,离线数仓的计算周期通常为天,所以数据同步周期也通常为天,即每天同步一次即可。

       数据的同步策略有全量同步增量同步

       全量同步,就是每天都将业务数据库中的全部数据同步一份到数据仓库,这是保证两侧数据同步的最简单的方式。就相当于每天进行一次 select * from xxx;

       那我们的历史数据(比如今天全量同步后,今天之前的数据就是历史数据)就没有意义了吗?其实我们并不会立即删除历史数据,因为数据是有价值的,我们既可以分析其中的变化,也可以作为备份以防不测。

       增量同步,就是每天只将业务数据中的新增及变化数据同步到数据仓库。采用每日增量同步的表,通常需要在首日先进行一次全量同步。

离线数仓(四)【数仓数据同步策略】(2)https://developer.aliyun.com/article/1532382

相关实践学习
AnalyticDB MySQL海量数据秒级分析体验
快速上手AnalyticDB MySQL,玩转SQL开发等功能!本教程介绍如何在AnalyticDB MySQL中,一键加载内置数据集,并基于自动生成的查询脚本,运行复杂查询语句,秒级生成查询结果。
阿里云云原生数据仓库AnalyticDB MySQL版 使用教程
云原生数据仓库AnalyticDB MySQL版是一种支持高并发低延时查询的新一代云原生数据仓库,高度兼容MySQL协议以及SQL:92、SQL:99、SQL:2003标准,可以对海量数据进行即时的多维分析透视和业务探索,快速构建企业云上数据仓库。 了解产品 https://www.aliyun.com/product/ApsaraDB/ads
相关文章
|
5月前
|
消息中间件 关系型数据库 Kafka
深入理解数仓开发(二)数据技术篇之数据同步
深入理解数仓开发(二)数据技术篇之数据同步
|
3月前
|
消息中间件 监控 关系型数据库
Serverless 应用的监控与调试问题之实时离线数仓一体化常用的解决方案有什么问题
Serverless 应用的监控与调试问题之实时离线数仓一体化常用的解决方案有什么问题
|
4月前
|
监控 数据挖掘 大数据
阿里云开源利器:DataX3.0——高效稳定的离线数据同步解决方案
对于需要集成多个数据源进行大数据分析的场景,DataX3.0同样提供了有力的支持。企业可以使用DataX将多个数据源的数据集成到一个统一的数据存储系统中,以便进行后续的数据分析和挖掘工作。这种集成能力有助于提升数据分析的效率和准确性,为企业决策提供有力支持。
|
4月前
|
存储 DataWorks Java
DataWorks产品使用合集之开发离线数仓时,需要多个工作空间的情况有哪些
DataWorks作为一站式的数据开发与治理平台,提供了从数据采集、清洗、开发、调度、服务化、质量监控到安全管理的全套解决方案,帮助企业构建高效、规范、安全的大数据处理体系。以下是对DataWorks产品使用合集的概述,涵盖数据处理的各个环节。
|
4月前
|
分布式计算 DataWorks 关系型数据库
阿里云数加-分析型数据库AnalyticDB数据导入的多样化策略
通过合理利用这些数据导入方法,用户可以充分发挥AnalyticDB的实时计算能力和高并发查询性能,为业务分析和决策提供强有力的数据支持。
|
5月前
|
分布式计算 DataWorks 关系型数据库
DataWorks操作报错合集之离线同步任务中,把表数据同步到POLARDB,显示所有数据都是脏数据,报错信息:ERROR JobContainer - 运行scheduler 模式[local]出错.是什么原因
DataWorks是阿里云提供的一站式大数据开发与治理平台,支持数据集成、数据开发、数据服务、数据质量管理、数据安全管理等全流程数据处理。在使用DataWorks过程中,可能会遇到各种操作报错。以下是一些常见的报错情况及其可能的原因和解决方法。
|
5月前
|
存储 消息中间件 NoSQL
Flink 实时数仓(一)【实时数仓&离线数仓对比】(2)
Flink 实时数仓(一)【实时数仓&离线数仓对比】
|
5月前
|
存储 消息中间件 Kafka
Flink 实时数仓(一)【实时数仓&离线数仓对比】(1)
Flink 实时数仓(一)【实时数仓&离线数仓对比】
|
5月前
|
SQL
离线数仓(十)【ADS 层开发】(5)
离线数仓(十)【ADS 层开发】

热门文章

最新文章

下一篇
无影云桌面