第14章_MySQL事务日志(1)

本文涉及的产品
云数据库 RDS MySQL,集群系列 2核4GB
推荐场景:
搭建个人博客
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
云数据库 RDS MySQL,高可用系列 2核4GB
简介: 第14章_MySQL事务日志

第14章_MySQL事务日志(没深入)

事务有4种特性:原子性、一致性、隔离性和持久性。那么事务的四种特性到底是基于什么机制实现呢?

事务的隔离性由 锁机制 实现。

而事务的原子性、一致性和持久性由事务的 redo 日志和undo 日志来保证。

REDO LOG 称为 重做日志 ,提供再写入操作,恢复提交事务修改的页操作,用来保证事务的持

久性。

UNDO LOG 称为 回滚日志 ,回滚行记录到某个特定版本,用来保证事务的原子性、一致性。

有的DBA或许会认为 UNDO 是 REDO 的逆过程,其实不然

有的DBA或许会认为UNDO是REDo的逆过程,其实不然。REDO和UNDO都可以视为是一种恢复操作,但是:

  • redo log:是存储引擎层(innodb)生成的日志,记录的是==“物理级别”==上的页修改操作,比如页号xxx、偏移量yyy写入了’zzz’数据。主要为了保证数据的可靠性;
  • undo log: 是存储引擎层(innodb)生成的日志,记录的是逻辑操作日志,比如对某一行数据进行了INSERT语句操作,那么undo log就记录一条与之相反的DELETE操作。主要用于事务的回滚(undo log记录的是每个修改操作的逆操作)和一致性非锁定读(undo log回滚行记录到某种特定的版本—MVCC,即多版本并发控制)。

1.redo日志

InnoDB存储引擎是以页为单位来管理存储空间的。在真正访问页面之前,需要把在磁盘上的页缓存到内存中的Buffer Pool之后才可以访问。所有的变更都必须先更新缓冲池中的数据,然后缓冲池中的脏页会以一定的频率被刷入磁盘( checkPoint机制),通过缓冲池来优化CPU和磁盘之间的鸿沟,这样就可以保证整体的性能不会下降太快。

1.1 为什么需要REDO日志

一方面,缓冲池可以帮助我们消除CPU和磁盘之间的鸿沟,checkpoint机制可以保证数据的最终落盘,然

而由于checkpoint 并不是每次变更的时候就触发 的,而是master线程隔一段时间去处理的。所以最坏的情

况就是事务提交后,刚写完缓冲池,数据库宕机了,那么这段数据就是丢失的,无法恢复。

另一方面,事务包含 持久性 的特性,就是说对于一个已经提交的事务,在事务提交后即使系统发生了崩

溃,这个事务对数据库中所做的更改也不能丢失。

那么如何保证这个持久性呢? 一个简单的做法 :在事务提交完成之前把该事务所修改的所有页面都刷新

到磁盘,但是这个简单粗暴的做法有些问题

  • 修改量与刷新磁盘工作量严重不成比例
    有时候我们仅仅修改了某个页面中的一个字节,但是我们知道在InnoDB中是以页为单位来进行磁盘lo的,也就是说我们在该事务提交时不得不将一个完整的页面从内存中刷新到磁盘,我们又知道一个页面默认是16KB大小,只修改一个字节就要刷新16KB的数据到磁盘上显然是太小题大做了。
  • 随机I/O刷新较慢
    一个事务可能包含很多语句,即使是一条语句也可能修改许多页面,假如该事务修改的这些页面可能并不相邻,这就意味着在将某个事务修改的Buffer Pool中的页面刷新到磁盘时,需要进行很多的随机Io,随机lo比顺序IO要慢,尤其对于传统的机械硬盘来说。

另一个解决的思路 :我们只是想让已经提交了的事务对数据库中数据所做的修改永久生效,即使后来系

统崩溃,在重启后也能把这种修改恢复出来。所以我们其实没有必要在每次事务提交时就把该事务在内

存中修改过的全部页面刷新到磁盘,只需要把 修改 了哪些东西 记录一下 就好。比如,某个事务将系统

表空间中 第10号 页面中偏移量为 100 处的那个字节的值 1 改成 2 。我们只需要记录一下:将第0号表

空间的10号页面的偏移量为100处的值更新为 2 。

InnoDB引擎的事务采用了WAL技术( Write-Ahead_Logg1ng),这种技术的思想就是先写日志,再写磁盘,只有日志写入成功,才算事务提交成功,这里的日志就是redo log。当发生宕机且数据未刷到磁盘的时候,可以通过redo log来恢复,保证ACID中的D,这就是redo log的作用。

1.2 REDO日志的好处、特点

  1. 好处
    redo日志降低了刷盘频率
    redo日志占用的空间非常小
  2. 特点
  • redo日志是顺序写入磁盘的
    在执行事务的过程中,每执行一条语句,就可能产生若T倏redo日志,这些日志是按照产生的顺序写入磁盘的,也就是使用顺序io,效率比随机lo快。
  • 事务执行过程中,redo log不断记录
    redo log跟bin log的区别,redo log是存储引擎层产生的,而bin log==(主从数据库使用)==是数据库层产生的。假设一个事务,对表做10万行的记录插入,在这个过程中,一直不断的往redo log顺序记录,而bin log不会记录,直到这个事务提交,才会一次写入到bin log文件中。

1.3 redo的组成

Redo log可以简单分为以下两个部分

  • 重做日志的缓冲 (redo log buffer) ,保存在内存中,是易失的。

在服务器启动时就向操作系统申请了一大片称之为redo log buffer的连续内存空间,翻译成中文就是redo日志缓冲区。这片内存空间被划分成若干个连续的redo log block。一个redo log block占用512字节大小。

参数设置:innodb_log_buffer_size:

ysql> show variables like '%innodb_log_buffer_size%';
+------------------------+----------+
| Variable_name     | Value  |
+------------------------+----------+
| innodb_log_buffer_size | 16777216 |
+------------------------+----------+
  • 重做日志文件 (redo log file) ,保存在硬盘中,是持久的。

1.4 redo的整体流程

以一个更新事务为例,redo log 流转过程,如下图所示:

第1步:先将原始数据从磁盘中读入内存中来,修改数据的内存拷贝
第2步:生成一条重做日志并写入redo log buffer,记录的是数据被修改后的值
第3步:当事务commit时,将redo log buffer中的内容刷新到 redo log file,对 redo log file采用追加
写的方式
第4步:定期将内存中修改的数据刷新到磁盘中

体会:

Write-Ahead Log(预先日志持久化):在持久化一个数据页之前,先将内存中相应的日志页持久化。

1.5 redo log的刷盘策略

redo log的写入并不是直接写入磁盘的,InnoDB引擎会在写redo log的时候先写redo log buffer,之后以 一

定的频率 刷入到真正的redo log file 中。这里的一定频率怎么看待呢?这就是我们要说的刷盘策略

注意,redo log buffer刷盘到redo log file的过程并不是真正的刷到磁盘中去,只是刷入到 文件系统缓存

(page cache)中去(这是现代操作系统为了提高文件写入效率做的一个优化),真正的写入会交给系

统自己来决定(比如page cache足够大了)。那么对于InnoDB来说就存在一个问题,如果交给系统来同

步,同样如果系统宕机,那么数据也丢失了(虽然整个系统宕机的概率还是比较小的)。

针对这种情况,InnoDB给出 innodb_flush_log_at_trx_commit 参数,该参数控制 commit提交事务

时,如何将 redo log buffer 中的日志刷新到 redo log file 中。它支持三种策略:

设置为0 :表示每次事务提交时不进行刷盘操作。(系统默认master thread每隔1s进行一次重做日

志的同步)

设置为1 :表示每次事务提交时都将进行同步,刷盘操作( 默认值 )

设置为2 :表示每次事务提交时都只把 redo log buffer 内容写入 page cache,不进行同步。由os自

己决定什么时候同步到磁盘文件

另外,InnoDB存储引擎有一个后台线程,每隔1秒,就会把redo log buffer 中的内容写到文件系统缓存( page cache ) ,然后调用刷盘操作。

也就是说,一个没有提交事务的redo log记录,也可能会刷盘。因为在事务执行过程redo log记录是会写入redo log buffer中,这些redo log记录会被后台线程刷盘。

除了后台线程每秒1次的轮询操作,还有一种情况,当redo log buffer 占用的空间即将达到innodb_log_buffer_size(这个参数默认是16M)的一半的时候,后台线程会主动刷盘。

1.6 不同刷盘策略演示

  1. 流程图

小结: innodb_flush_log_at_trx_commit=1

为1时,只要事务提交成功,redo log记录就一定在硬盘里,不会有任何数据丢失。

如果事务执行期间MysQL挂了或宕机,这部分日志丢了,但是事务并没有提交,所以日志丢了也不会有损失。可以保证ACID的D,数据绝对不会丢失,但是效率最差的。

建议使用默认值,虽然操作系统宕机的概率理论小于数据库宕机的概率,但是一般既然使用了事务,那么数据的安全相对来说更重要些。|

小结innodb_flush_log_at_trx_commit=2

为2时,只要事务提交成功,redo log buffer中的内容只写入文件系统缓存( page cache )。

如果仅仅只是MysQL挂了不会有任何数据丢失,但是操作系统宕机可能会有1秒数据的丢失,这种情况下无法满足ACID中的D。但是数值2肯定是效率最高的。

小结: innodb_flush_log_at_trx_commit=o

为0时,master thread中每1秒进行一次重做日志的fsync操作,因此实例crash最多丢失1秒钟内的事务。(master thread是负责将缓冲池中的数据异步刷新到磁盘,保证数据的一致性)

数值o的话,是一种折中的做法,它的IO效率理论是高于1的,低于2的,这种策略也有丢失数据的风险,也无法保证D。

1.7 写入redo log buffer 过程

MysQL把对底层页面中的一次原子访问的过程称之为一个Mini-Transaction,简称mtr,比如,向某个索引对应的B+树中插入一条记录的过程就是一个Mini-Transaction。一个所谓的mtr可以包含一组redo日志,在进行崩溃恢复时这一组redo日志作为一个不可分割的整体。

1.补充概念:Mini-Transaction

一个事务可以包含若干条语句,每一条语句其实是由若干个 mtr 组成,每一个 mtr 又可以包含若干条

redo日志,画个图表示它们的关系就是这样:

2.redo日志写入log buffer

向log buffer中写入redo日志的过程是顺序的,也就是先往前边的block中写,当该block的空闲空间用完之后再往下一个block中写。当我们想往log buffer中写入redo日志时,第一个遇到的问题就是应该写在哪个block的哪个偏移量处,所以InnoDB的设计者特意提供了一个称之为buf_free的全局变量,该变量指明后续写入的redo日志应该写入到log buffer 中的哪个位置,如图所示:

一个mtr执行过程中可能产生若干条redo日志,这些redo日志是一个不可分割的组,所以其实并不是每生成一条redo日志,就将其插入到log buffer中,而是每个mtr运行过程中产生的日志先暂时存到一个地方,当该mtr结束的时候,将过程中产生的一组redo日志再全部复制到log buffer中。我们现在假设有两个名为T1、T2的事务,每个事务都包含2个mtr,我们给这几个mtr命名一下:

  • 事务T1的两个mtr分别称为mtr_T1_1和mtr_T1_2。
  • 事务T2的两个mtr分别称为mtr_T2_1和mtr_T2_2。

每个mtr都会产生一组redo日志,用示意图来描述一下这些mtr产生的日志情况:

不同的事务可能是 并发 执行的,所以 T1 、 T2 之间的 mtr 可能是 交替执行 的。

3. redo log block的结构图

一个redo log block是由日志头,日志体,日志尾组成,日志头占12字节,日志尾占8字节,所以一个block真正能存储的数据就是512-12-8=492字节

为什么一个block设计成512字节?

这个和磁盘的扇区有关,机械磁盘默认的扇区就是512字节,如果你要写入的数据大于512字节,那么要写入的扇区肯定不止一个,这时就要涉及到盘片的转动,找到下一个扇区,假设现在需要写入两个扇区A和B,如果扇区A写入成功,而扇区B写入失败,那么就会出现非原子性的写入,而如果每次只写入和扇区的大小一样的512字节,那么每次的写入都是原子性的。

第14章_MySQL事务日志(2)https://developer.aliyun.com/article/1530729

相关实践学习
如何在云端创建MySQL数据库
开始实验后,系统会自动创建一台自建MySQL的 源数据库 ECS 实例和一台 目标数据库 RDS。
全面了解阿里云能为你做什么
阿里云在全球各地部署高效节能的绿色数据中心,利用清洁计算为万物互联的新世界提供源源不断的能源动力,目前开服的区域包括中国(华北、华东、华南、香港)、新加坡、美国(美东、美西)、欧洲、中东、澳大利亚、日本。目前阿里云的产品涵盖弹性计算、数据库、存储与CDN、分析与搜索、云通信、网络、管理与监控、应用服务、互联网中间件、移动服务、视频服务等。通过本课程,来了解阿里云能够为你的业务带来哪些帮助     相关的阿里云产品:云服务器ECS 云服务器 ECS(Elastic Compute Service)是一种弹性可伸缩的计算服务,助您降低 IT 成本,提升运维效率,使您更专注于核心业务创新。产品详情: https://www.aliyun.com/product/ecs
相关文章
|
1天前
|
存储 Oracle 关系型数据库
【赵渝强老师】MySQL InnoDB的数据文件与重做日志文件
本文介绍了MySQL InnoDB存储引擎中的数据文件和重做日志文件。数据文件包括`.ibd`和`ibdata`文件,用于存放InnoDB数据和索引。重做日志文件(redo log)确保数据的可靠性和事务的持久性,其大小和路径可由相关参数配置。文章还提供了视频讲解和示例代码。
67 10
【赵渝强老师】MySQL InnoDB的数据文件与重做日志文件
|
20天前
|
存储 SQL 关系型数据库
MySQL的事务隔离级别
【10月更文挑战第17天】MySQL的事务隔离级别
94 43
|
1月前
|
存储 缓存 关系型数据库
MySQL事务日志-Redo Log工作原理分析
事务的隔离性和原子性分别通过锁和事务日志实现,而持久性则依赖于事务日志中的`Redo Log`。在MySQL中,`Redo Log`确保已提交事务的数据能持久保存,即使系统崩溃也能通过重做日志恢复数据。其工作原理是记录数据在内存中的更改,待事务提交时写入磁盘。此外,`Redo Log`采用简单的物理日志格式和高效的顺序IO,确保快速提交。通过不同的落盘策略,可在性能和安全性之间做出权衡。
1612 14
|
25天前
|
SQL 关系型数据库 MySQL
阿里面试:MYSQL 事务ACID,底层原理是什么? 具体是如何实现的?
尼恩,一位40岁的资深架构师,通过其丰富的经验和深厚的技術功底,为众多读者提供了宝贵的面试指导和技术分享。在他的读者交流群中,许多小伙伴获得了来自一线互联网企业的面试机会,并成功应对了诸如事务ACID特性实现、MVCC等相关面试题。尼恩特别整理了这些常见面试题的系统化解答,形成了《MVCC 学习圣经:一次穿透MYSQL MVCC》PDF文档,旨在帮助大家在面试中展示出扎实的技术功底,提高面试成功率。此外,他还编写了《尼恩Java面试宝典》等资料,涵盖了大量面试题和答案,帮助读者全面提升技术面试的表现。这些资料不仅内容详实,而且持续更新,是求职者备战技术面试的宝贵资源。
阿里面试:MYSQL 事务ACID,底层原理是什么? 具体是如何实现的?
|
1月前
|
SQL 存储 关系型数据库
Mysql主从同步 清理二进制日志的技巧
Mysql主从同步 清理二进制日志的技巧
26 1
|
19天前
|
存储 关系型数据库 MySQL
MySQL中的Redo Log、Undo Log和Binlog:深入解析
【10月更文挑战第21天】在数据库管理系统中,日志是保障数据一致性和完整性的关键机制。MySQL作为一种广泛使用的关系型数据库管理系统,提供了多种日志类型来满足不同的需求。本文将详细介绍MySQL中的Redo Log、Undo Log和Binlog,从背景、业务场景、功能、底层实现原理、使用措施等方面进行详细分析,并通过Java代码示例展示如何与这些日志进行交互。
32 0
|
6天前
|
XML 安全 Java
【日志框架整合】Slf4j、Log4j、Log4j2、Logback配置模板
本文介绍了Java日志框架的基本概念和使用方法,重点讨论了SLF4J、Log4j、Logback和Log4j2之间的关系及其性能对比。SLF4J作为一个日志抽象层,允许开发者使用统一的日志接口,而Log4j、Logback和Log4j2则是具体的日志实现框架。Log4j2在性能上优于Logback,推荐在新项目中使用。文章还详细说明了如何在Spring Boot项目中配置Log4j2和Logback,以及如何使用Lombok简化日志记录。最后,提供了一些日志配置的最佳实践,包括滚动日志、统一日志格式和提高日志性能的方法。
95 30
【日志框架整合】Slf4j、Log4j、Log4j2、Logback配置模板
|
1月前
|
XML JSON Java
Logback 与 log4j2 性能对比:谁才是日志框架的性能王者?
【10月更文挑战第5天】在Java开发中,日志框架是不可或缺的工具,它们帮助我们记录系统运行时的信息、警告和错误,对于开发人员来说至关重要。在众多日志框架中,Logback和log4j2以其卓越的性能和丰富的功能脱颖而出,成为开发者们的首选。本文将深入探讨Logback与log4j2在性能方面的对比,通过详细的分析和实例,帮助大家理解两者之间的性能差异,以便在实际项目中做出更明智的选择。
196 3
|
3月前
|
Kubernetes Ubuntu Windows
【Azure K8S | AKS】分享从AKS集群的Node中查看日志的方法(/var/log)
【Azure K8S | AKS】分享从AKS集群的Node中查看日志的方法(/var/log)
129 3
|
28天前
|
Python
log日志学习
【10月更文挑战第9天】 python处理log打印模块log的使用和介绍
28 0

推荐镜像

更多
下一篇
无影云桌面