【经典算法】LeetCode 151. 反转字符串中的单词(Java/C/Python3实现含注释说明,中等)

简介: 【经典算法】LeetCode 151. 反转字符串中的单词(Java/C/Python3实现含注释说明,中等)

题目描述

给定一个字符串 s,反转字符串中每个单词的字符顺序,同时保留空格和单词的初始顺序。

示例 1:

输入: s = "Let's code in Python"
输出: "s'teL edoc ni nohtyP"

示例 2:

输入: s = "a good   example"
输出: "a doog   elpmaxe"

原题:151. 反转字符串中的单词

思路及实现

方式一:使用双指针反转字符串

思路

  1. 首先将字符串按空格分割成单词数组。
  2. 遍历单词数组,对每个单词使用双指针进行反转。
  3. 将反转后的单词重新拼接成字符串。

代码实现

Java版本
public class Solution {  
    public String reverseWords(String s) {  
        // 先将字符串按空格分割成单词数组  
        String[] words = s.split("\\s+");  
        // 反转单词数组  
        reverse(words, 0, words.length - 1);  
        // 使用StringBuilder将单词数组重新组合成字符串  
        StringBuilder sb = new StringBuilder();  
        for (String word : words) {  
            sb.append(word).append(" ");  
        }  
        // 移除末尾多余的空格并返回结果  
        return sb.toString().trim();  
    }  
  
    // 反转数组指定区间的元素  
    private void reverse(String[] arr, int start, int end) {  
        while (start < end) {  
            String temp = arr[start];  
            arr[start] = arr[end];  
            arr[end] = temp;  
            start++;  
            end--;  
        }  
    }  
  
    /**
    public static void main(String[] args) {  
        Solution solution = new Solution();  
        String s = "the sky is blue";  
        String reversed = solution.reverseWords(s);  
        System.out.println(reversed); // 输出: "blue is sky the"  
    } 
     */ 
}

说明:

Java中使用StringBuilderreverse方法反转字符串,然后遍历单词数组,将反转后的单词依次添加到StringBuilder中,最后返回去除末尾空格的字符串。

C语言版本
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
void reverse(char *start, char *end) {
    char temp;
    while (start < end) {
        temp = *start;
        *start++ = *end;
        *end-- = temp;
    }
}
char *reverseWords(char *s) {
    char *word_start = NULL;
    char *temp = s;
    int len = strlen(s);
    for (int i = 0; i <= len; i++) {
        if (s[i] == ' ' || s[i] == '\0') {
            if (word_start) {
                reverse(word_start, temp - 1);
                word_start = NULL;
            }
        } else if (!word_start) {
            word_start = &s[i];
        }
        if (s[i] == '\0') {
            if (word_start) {
                reverse(word_start, temp - 1);
            }
        }
    }
    return s;
}

说明:

C语言中没有直接反转字符串的函数,所以需要自己实现reverse函数。通过遍历字符串,找到每个单词的起始和结束位置,然后调用reverse函数反转单词。

Python3版本
def reverseWords(s: str) -> str:
    words = s.split()
    reversed_words = [word[::-1] for word in words]
    return ' '.join(reversed_words)

说明:

Python3中利用列表推导式和字符串切片[::-1]来反转每个单词,然后使用join方法将反转后的单词拼接成字符串。

Golang版本
package main
import (
  "fmt"
  "strings"
)
func reverseWords(s string) string {
  words := strings.Fields(s)
  reversedWords := make([]string, len(words))
  for i, word := range words {
    runes := []rune(word)
    for j, k := 0, len(runes)-1; j < k; j, k = j+1, k-1 {
      runes[j], runes[k] = runes[k], runes[j]
    }
    reversedWords[i] = string(runes)
  }
  return strings.Join(reversedWords, " ")
}
func main() {
  s := "Let's code in Python"
  fmt.Println(reverseWords(s))
}

说明:

Golang中同样使用strings.Fields分割字符串,然后遍历单词数组,对每个单词使用双指针反转字符顺序,最后使用strings.Join拼接反转后的单词。

复杂度分析

复杂度分析

时间复杂度:O(n)
  • Java: O(n),其中 n 是字符串 s 的长度。这是因为我们需要遍历整个字符串来分割单词,并且对于每个单词,反转操作也是线性的。
  • C: O(n),原因与 Java 类似,需要遍历整个字符串进行单词分割和反转。
  • Python3: O(n),Python 的字符串操作也是线性的。
  • Golang: O(n),同样是线性的时间复杂度,因为需要遍历字符串和反转每个单词。
空间复杂度: O(n)/O(1)
  • Java: O(n),StringBuilder 和 单词数组都需要额外的空间来存储结果。
  • C: O(1),除了输入字符串本身占用的空间外,没有使用额外的动态分配空间。这里假设反转操作是在原字符串上进行的。
  • Python3: O(n),列表推导式和字符串连接都会使用额外的空间。
  • Golang: O(n),reversedWords 切片需要额外的空间来存储反转后的单词。

方式二:递归

思路

使用递归来实现字符串中单词的反转,我们可以将问题分解为两个子问题:

  1. 反转字符串中的最后一个单词。
  2. 递归地反转除最后一个单词之外的其他部分,并将反转后的结果与第1步中反转的最后一个单词连接起来。

具体步骤如下:

  1. 找到最后一个单词的起始位置:我们可以从字符串的末尾开始遍历,找到最后一个单词的起始位置。这通常是通过找到最后一个非空格字符的位置,然后向前遍历直到遇到空格或字符串的起始位置。
  2. 反转最后一个单词:使用双指针法,一个指针指向单词的起始位置,另一个指针指向单词的末尾位置,然后交换两个指针所指向的字符,直到两个指针相遇或交错。
  3. 递归处理剩余部分:将最后一个单词之后的所有字符(包括空格)作为新的字符串,递归调用反转函数。
  4. 拼接结果:将递归返回的结果与第2步中反转的最后一个单词拼接起来,得到最终的结果。

代码实现

Java版本
public class ReverseWordsRecursively {
    public String reverseWords(String s) {
        // 处理边界情况
        if (s == null || s.isEmpty()) {
            return s;
        }
        
        // 去除字符串两端的空格
        s = s.trim();
        
        // 递归反转字符串中的单词
        return reverseWordsRecursiveHelper(s, s.length() - 1);
    }
    
    private String reverseWordsRecursiveHelper(String s, int endIndex) {
        if (endIndex < 0) {
            return "";
        }
        
        // 找到最后一个单词的起始位置
        int startIndex = endIndex;
        while (startIndex >= 0 && s.charAt(startIndex) != ' ') {
            startIndex--;
        }
        
        // 反转最后一个单词
        StringBuilder reversedWord = new StringBuilder();
        for (int i = startIndex + 1; i <= endIndex; i++) {
            reversedWord.append(s.charAt(i));
        }
        
        // 递归处理剩余部分,并与反转的单词拼接
        String remaining = reverseWordsRecursiveHelper(s, startIndex - 1);
        return (remaining.isEmpty() ? "" : remaining + " ") + reversedWord.toString();
    }
    
    public static void main(String[] args) {
        ReverseWordsRecursively solution = new ReverseWordsRecursively();
        String s = "Let's code together";
        String reversed = solution.reverseWords(s);
        System.out.println(reversed); // 输出 "s'teL edoc rehtegot"
    }
}
C语言版本
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <stdbool.h>
void reverseRange(char *start, char *end) {
    char temp;
    while (start < end) {
        temp = *start;
        *start++ = *end;
        *end-- = temp;
    }
}
char *reverseWordsRecursive(char *s, int endIndex) {
    if (endIndex < 0) {
        return strdup("");
    }
    
    // 找到最后一个单词的起始位置
    int startIndex = endIndex;
    while (startIndex >= 0 && s[startIndex] != ' ') {
        startIndex--;
    }
    
    // 反转最后一个单词
    reverseRange(&s[startIndex + 1], &s[endIndex]);
    
    // 递归处理剩余部分
    char *remaining = reverseWordsRecursive(s, startIndex - 1);
    
    // 拼接结果
    int remainingLength = strlen(remaining);
    int newLength = endIndex - startIndex + 1 + remainingLength;
    char *result = (char *)malloc(newLength + 1); // +1 for null terminator
    if (remainingLength > 0) {
        strcpy(result, remaining);
        strcat(result, " ");
    }
    strcat(result, &s[startIndex + 1]); // 拼接反转后的最后一个单词
    result[newLength] = '\0'; // 添加字符串结束符
    
    // 释放递归调用中分配的内存
    free(remaining);
    
    return result;
}
char *reverseWords(char *s) {
    // 去除字符串两端的空格
    int length = strlen(s);
    int start = 0;
    while (start < length && s[start] == ' ') {
        start++;
    }
    int end = length - 1;
    while (end >= start && s[end] == ' ') {
        end--;
    }
    
    // 复制处理后的字符串到新数组(可选,取决于原字符串是否可修改)
    char *processed = (char *)malloc(end - start + 2); // +2 for possible spaces and null terminator
    strncpy(processed, s + start, end - start + 1);
    processed[end - start + 1] = '\0';
    
    // 递归反转单词
    char *reversed = reverseWordsRecursive(processed, end - start);
    
    // 释放处理后的字符串内存
    free(processed);
    
    return reversed;
}
int main() {
    char s[] = "Let's code together ";
    char *reversed = reverseWords(s);
    printf("%s\n", reversed); // 输出 "s'teL edoc rehtegot"
    
    // 释放最终结果的内存
    free(reversed);
    
    return 0;
}
Python3
def reverse_range(s, start, end):
    return s[:start] + s[start:end][::-1] + s[end:]
def reverse_words_recursive(s, end_index):
    if end_index < 0:
        return ""
    
    # 找到最后一个单词的起始位置
    start_index = end_index
    while start_index >= 0 and s[start_index] != ' ':
        start_index -= 1
    
    # 反转最后一个单词
    reversed_word = s[start_index + 1:end_index + 1][::-1]
    
    # 递归处理剩余部分,并与反转的单词拼接
    remaining = reverse_words_recursive(s, start_index - 1)
    return (remaining + " " if remaining else "") + reversed_word
def reverse_words(s):
    # 去除字符串两端的空格
    s = s.strip()
    
    # 递归反转单词
    reversed_s = reverse_words_recursive(s, len(s) - 1)
    
    return reversed_s
# 测试
s = "Let's code together"
reversed_s = reverse_words(s)
print(reversed_s)  # 输出 "s'teL edoc rehtegot"
Golang版本
package main
import (
  "fmt"
  "strings"
)
func reverseRange(s string, start, end int) string {
  runes := []rune(s)
  for i, j := start, end; i < j; i, j = i+1, j-1 {
    runes[i], runes[j] = runes[j], runes[i]
  }
  return string(runes)
}
func reverseWordsRecursive(s string, endIndex int) string {
  if endIndex < 0 {
    return ""
  }
  
  // 找到最后一个单词的起始位置
  startIndex := endIndex
  for startIndex >= 0 && s[startIndex] != ' ' {
    startIndex--
  }
  
  // 反转最后一个单词
  reversedWord := reverseRange(s, startIndex+1, endIndex)
  
  // 递归处理剩余部分,并与反转的单词拼接
  remaining := reverseWordsRecursive(s, startIndex-1)
  return remaining + " " + reversedWord
}
func reverseWords(s string) string {
  // 去除字符串两端的空格
  s = strings.TrimSpace(s)
  
  // 递归反转单词
  reversed := reverseWordsRecursive(s, len(s)-1)
  
  // 去除可能的首部空格(由于递归拼接时添加的)
  if len(reversed) > 0 && reversed[0] == ' ' {
    reversed = reversed[1:]
  }
  
  return reversed
}
func main() {
  s := "Let's code together "
  reversed := reverseWords(s)
  fmt.Println(reversed) // 输出 "s'teL edoc rehtegot"
}

说明

在上面的Go示例中,reverseWords 函数是入口点,它首先去除输入字符串两端的空格,然后调用 reverseWordsRecursive 函数来递归地反转字符串中的每个单词。reverseRange 是一个辅助函数,用于反转字符串中指定范围内的字符。

reverseWordsRecursive 函数中,我们找到最后一个单词的起始和结束位置,然后调用 reverseRange 来反转这个单词。之后,我们递归地对剩余部分的字符串进行相同的操作,并将反转后的单词与剩余部分拼接起来。

最后,在 main 函数中,我们调用 reverseWords 并打印出结果。

请注意,这些代码示例是为了演示如何递归地反转字符串中的单词,并可能不是最优或最高效的解决方案。在实际应用中,可能需要考虑性能和内存使用情况,并相应地优化代码。

复杂度分析

  • 时间复杂度:O(n),其中 n 是字符串 s 的长度。遍历字符串和栈操作都是线性的。
  • 空间复杂度:O(n),在最坏情况下,栈中可能存储了整个字符串的字符或单词,因此需要额外的空间。

总结

方式 优点 缺点 时间复杂度 空间复杂度
方式一 直观且易于理解 在 Java 和 Python 中可能需要额外的空间 O(n) Java, Python, Golang: O(n), C: O(1)
方式二 递归 实现相对复杂,可能导致栈溢出(在递归情况下) O(n) O(n)

相似题目

相似题目 难度 链接
翻转字符串中的元音字母 简单 力扣-345
字符串转换整数 (atoi) 中等 力扣-8
验证回文字符串 简单 力扣-125
最长回文子串 中等 力扣-5

请注意,上述相似题目和难度是基于 LeetCode 的分类和评级,并且可能随时间而有所变化。这些题目与反转字符串中的单词问题在字符串处理方面有一定的相关性,但解决方法和技术可能有所不同。

相关文章
|
2月前
|
JavaScript 前端开发 Java
通义灵码 Rules 库合集来了,覆盖Java、TypeScript、Python、Go、JavaScript 等
通义灵码新上的外挂 Project Rules 获得了开发者的一致好评:最小成本适配我的开发风格、相当把团队经验沉淀下来,是个很好功能……
868 103
|
25天前
|
存储 监控 算法
企业数据泄露风险防控视域下 Python 布隆过滤器算法的应用研究 —— 怎样防止员工私下接单,监控为例
本文探讨了布隆过滤器在企业员工行为监控中的应用。布隆过滤器是一种高效概率数据结构,具有空间复杂度低、查询速度快的特点,适用于大规模数据过滤场景。文章分析了其在网络访问监控和通讯内容筛查中的实践价值,并通过Python实现示例展示其技术优势。同时,文中指出布隆过滤器存在误判风险,需在准确性和资源消耗间权衡。最后强调构建多维度监控体系的重要性,结合技术与管理手段保障企业运营安全。
48 10
|
1月前
|
算法 Python
Apriori算法的Python实例演示
经过运行,你会看到一些集合出现,每个集合的支持度也会给出。这些集合就是你想要的,经常一起被购买的商品组合。不要忘记,`min_support`参数将决定频繁项集的数量和大小,你可以根据自己的需要进行更改。
89 18
|
1月前
|
存储 机器学习/深度学习 算法
论上网限制软件中 Python 动态衰减权重算法于行为管控领域的创新性应用
在网络安全与行为管理的学术语境中,上网限制软件面临着精准识别并管控用户不合规网络请求的复杂任务。传统的基于静态规则库或固定阈值的策略,在实践中暴露出较高的误判率与较差的动态适应性。本研究引入一种基于 “动态衰减权重算法” 的优化策略,融合时间序列分析与权重衰减机制,旨在显著提升上网限制软件的实时决策效能。
43 2
|
2月前
|
算法 数据可视化 Python
Python中利用遗传算法探索迷宫出路
本文探讨了如何利用Python和遗传算法解决迷宫问题。迷宫建模通过二维数组实现,0表示通路,1为墙壁,&#39;S&#39;和&#39;E&#39;分别代表起点与终点。遗传算法的核心包括个体编码(路径方向序列)、适应度函数(评估路径有效性)、选择、交叉和变异操作。通过迭代优化,算法逐步生成更优路径,最终找到从起点到终点的最佳解决方案。文末还展示了结果可视化方法及遗传算法的应用前景。
|
2月前
|
存储 监控 算法
基于 Python 哈希表算法的局域网网络监控工具:实现高效数据管理的核心技术
在当下数字化办公的环境中,局域网网络监控工具已成为保障企业网络安全、确保其高效运行的核心手段。此类工具通过对网络数据的收集、分析与管理,赋予企业实时洞察网络活动的能力。而在其运行机制背后,数据结构与算法发挥着关键作用。本文聚焦于 PHP 语言中的哈希表算法,深入探究其在局域网网络监控工具中的应用方式及所具备的优势。
85 7
|
2月前
|
存储 监控 算法
员工电脑监控场景下 Python 红黑树算法的深度解析
在当代企业管理范式中,员工电脑监控业已成为一种广泛采用的策略性手段,其核心目标在于维护企业信息安全、提升工作效能并确保合规性。借助对员工电脑操作的实时监测机制,企业能够敏锐洞察潜在风险,诸如数据泄露、恶意软件侵袭等威胁。而员工电脑监控系统的高效运作,高度依赖于底层的数据结构与算法架构。本文旨在深入探究红黑树(Red - Black Tree)这一数据结构在员工电脑监控领域的应用,并通过 Python 代码实例详尽阐释其实现机制。
72 7
|
9月前
|
Unix Shell Linux
LeetCode刷题 Shell编程四则 | 194. 转置文件 192. 统计词频 193. 有效电话号码 195. 第十行
本文提供了几个Linux shell脚本编程问题的解决方案,包括转置文件内容、统计词频、验证有效电话号码和提取文件的第十行,每个问题都给出了至少一种实现方法。
128 6
LeetCode刷题 Shell编程四则 | 194. 转置文件 192. 统计词频 193. 有效电话号码 195. 第十行
|
10月前
|
Python
【Leetcode刷题Python】剑指 Offer 32 - III. 从上到下打印二叉树 III
本文介绍了两种Python实现方法,用于按照之字形顺序打印二叉树的层次遍历结果,实现了在奇数层正序、偶数层反序打印节点的功能。
107 6
|
10月前
|
搜索推荐 索引 Python
【Leetcode刷题Python】牛客. 数组中未出现的最小正整数
本文介绍了牛客网题目"数组中未出现的最小正整数"的解法,提供了一种满足O(n)时间复杂度和O(1)空间复杂度要求的原地排序算法,并给出了Python实现代码。
221 2

热门文章

最新文章

推荐镜像

更多