TensorFlow 实战(八)(1)https://developer.aliyun.com/article/1522966
A.2 在 Windows 环境中
在本节中,我们将讨论如何在 Windows 上安装虚拟环境,并确保 GPU 支持。
A.2.1 创建一个虚拟 Python 环境(Anaconda)
此节讨论了在 Windows 主机上创建 conda 环境的步骤:
- 在 Windows 系统上安装 Anaconda(
docs.anaconda.com/anaconda/install/linux/
),这也将安装一个用于执行 Anaconda 特定命令的 CLI(命令行接口)。 - 在开始菜单的搜索栏中输入 Anaconda Prompt,打开 Anaconda Prompt(如图 A.2 所示)。
- 在终端中运行 conda create -n manning.tf2 python=3.9 以设置 conda 虚拟环境。
- (建议)在您的主文件夹(例如,C:\Users\Documents)中创建一个名为 code 的文件夹,在其中我们将本地存储代码,并使用 cd C:\Users\Documents 进入该文件夹。
- 如果尚未安装,请为 Windows 安装 Git(例如,
git-scm.com/download/win
)。 - 使用 git clone https://github.com/thushv89/manning_tf2_in_action.git 克隆托管在 Github 上的代码库。
- 使用 cd manning_tf2_in_action 进入克隆代码库。
- 使用 conda activate manning.tf2 激活环境。
- 使用 pip install -r requirements.txt 安装所需的库。
图 A.2:在 Windows 上打开 Anaconda Prompt
A.2.2 GPU 支持的先决条件
在本节中,我们将讨论确保 GPU 被识别并正常工作的几个先决条件。
安装 NVIDIA 驱动程序
确保您已为您的 GPU 安装了最新的 NVIDIA 图形驱动程序。您可以在mng.bz/xnKe
找到驱动程序安装程序。如果您不安装最新的驱动程序,您可能会在获取 TensorFlow 的 GPU 支持的后续步骤中遇到问题。
安装 CUDA
在本节中,我们将安装 CUDA 11.2,因为我们使用的是高于 2.5.0 版本的 TensorFlow。但是,您需要选择适合您 TensorFlow 版本的正确 CUDA 版本,如www.tensorflow.org/install/source#gpu
中所述。
要安装所需的 CUDA 版本,请完成以下步骤:
- 转到
developer.nvidia.com/cuda-toolkit-archive
页面。这将显示您可以下载的所有 CUDA 版本。 - 通过单击所需的 CUDA 版本,进入页面如图 A.3 所示。例如,图 A.3 描述了选择 Windows 操作系统获取 CUDA 11.7 的选项。
- 以管理员身份运行下载的 .exe 文件,并按照提示进行操作。
图 A.3:CUDA 下载页面(Windows 安装)
安装完成后,需要将安装路径添加到特殊环境变量中:
- 通过从开始菜单中选择“编辑系统环境变量”来打开“环境变量”窗口(图 A.4)。
- 根据表 A.3 中的说明,将以下路径添加到路径变量中。 图 A.5 显示了如何在 Windows 上添加/修改环境变量。
图 A.4 打开系统属性窗口
表 A.3 需要添加和修改的路径变量
PATH | \bin |
CUDA_PATH |
图 A.5 添加/修改路径变量的步骤
安装 CuDNN
与 CUDA 类似,需要仔细选择 cuDNN 版本。 表 A.4 列出了最新 TensorFlow 版本支持的 cuDNN 版本。 要获取完整列表,请访问www.tensorflow.org/install/source#gpu
。
表 A.4 最新 TensorFlow 版本支持的 cuDNN 版本
TensorFlow version | cuDNN version |
2.4.x | 8.1 |
2.5.x | 8.1 |
2.6.x | 8.0 |
首先,按照developer.nvidia.com/cudnn
上的说明和提示下载首选的 cuDNN 软件包。 要安装 cuDNN,请按照mng.bz/AyQK
上提供的说明操作。
A.3 激活和停用 conda 环境
一旦 conda 环境被创建,完成以下步骤来激活或停用环境。
在 Windows 上(通过 Anaconda Prompt)(图 A.6)
- 运行 conda activate 以激活环境。
- 运行 conda deactivate 以停用当前活动环境。
图 A.6 激活 conda 环境
在 Ubuntu 上(通过终端)
- 运行 source activate (Anaconda < 4.4)或 conda activate (Anaconda >= 4.4)以激活环境。
- 运行 conda deactivate 以停用当前活动环境。
A.4 运行 Jupyter Notebook 服务器并创建笔记本
我们将使用 Jupyter Notebook 服务器编写代码并执行它。 具体来说,我们将启动 Jupyter Notebook 服务器,它将为您提供一个仪表板(网页)以创建 Jupyter Notebook。 Jupyter Notebook 是一个交互式 Python 运行时环境。 这意味着您可以在 Jupyter Notebooks 中编写代码,并根据需要运行不同的代码片段。 这是因为代码可以分隔成所谓的notebook cells。 让我们看看如何启动 Jupyter Notebook 服务器并开始编码:
- 打开命令行终端(例如,Ubuntu 终端或 Windows Anaconda Prompt),并激活虚拟环境 manning.tf2(如果尚未激活)。
- 在 CLI 中使用 cd 命令进入您下载代码的目录(例如,cd C:\Users\Documents\code\manning_tf2_in_action)。
- 在 CLI 中运行命令 jupyter notebook。
- 这将在您默认的浏览器上打开 Jupyter Notebook 服务器的首页。
- 现在,您可以在该目录中浏览文件夹结构,打开任何笔记本,并运行它(图 A.7)。
- 一旦打开了一个笔记本,您就可以进行各种操作,如创建代码单元格、运行代码单元格等(图 A.8)。
图 A.7 Jupyter Notebook 服务器创建的首页
图 A.8 Jupyter Notebook 概览
A.5 杂项注释
为了让 TensorFlow/Keras 提供的绘图功能正常工作,您安装了一个名为 graphviz 的 Python 包。您可能需要将该库的路径(例如,如果您使用了 Anaconda 安装,则为 \envs\manning.tf2\Library\bin\graphviz)添加到操作系统的 PATH 变量中。
TensorFlow 实战(八)(3)https://developer.aliyun.com/article/1522969