文献解读-群体基因组第一期|《对BMI的影响:探究BMI的基因型-环境效应》

简介: 该文探讨了童年不良经历(ACEs)如何通过基因型-环境交互作用影响体重指数(BMI)。研究基于43,000名参与者的全外显子测序数据,发现在ACEs暴露下,55个基因变异与BMI有显著关联。研究表明,ACEs不仅直接导致不良健康结果,还可能增强某些基因对健康的负面影响。因此,未来研究应重视童年经历对健康的影响及其与遗传变异的交互作用,以改善患者的整体健康。

文献解读-Population Sequencing.png

关键词:应用遗传流行病学;群体测序;群体基因组;基因组变异检测;

文献简介

  • 标题(英文):The Impact of ACEs on BMI: An Investigation of the Genotype-Environment Effects of BMI
  • 标题(中文):ACEs对BMI的影响:探究BMI的基因型-环境效应
  • 发表期刊:Behavior Genetics
  • 作者单位:美国俄勒冈州立大学心理学系
  • 发表年份:2022
  • 文章地址https://doi.org/10.3389/fgene.2022.816660

图1 文献简介


Childhood trauma and adversity has long been linked with a greater risk of negative adult health outcomes (Felitti et al., 1998; McCrory et al., 2011; Merrick et al., 2019; Jones et al., 2020; Park et al., 2020). Adverse Childhood Experiences or Events (ACEs) are defined as traumatic events and unsafe environments occurring in children before the age of 18 (Felitti et al., 1998). The original ACE questionnaire and scoring protocol contains ten Yes/No questions that examine the incidence of emotional, physical, sexual maltreatment, neglect, substance abuse within the household, mental illness in the household, violence, and incarceration of a household member (Felitti et al., 1998).

长期以来,研究表明童年创伤和逆境与成人负面健康结果之间存在显著关联。这些被称为“童年不良经历或事件”(ACE),包括18岁前儿童所经历的创伤性事件和不安全环境,如虐待、忽视、家庭暴力等。这些经历通过ACE问卷等工具进行评估,并对个体的长期健康产生深远影响。

本文研究了不良童年经历(Adverse Childhood Experiences or Events,ACEs)与基因型-环境交互作用对体重指数(BMI)的影响。研究者使用了Healthy Nevada Project (HNP)的数据,该项目包括43,000名具有全外显子测序(WES)及匹配的电子健康记录的参与者。其中,17,839名参与者提供了关于ACEs的调查结果。研究发现,ACEs次数与成年肥胖具有很强的关联性,并鉴定了55个具有基因交互作用的常见和罕见变异。

图2

在该项研究中,研究者首先研究了ACEs与BMI之间的关联性;然后使用约500万个常见和罕见变异探索了BMI与ACEs的全基因组-环境交互作用。全基因组-环境交互研究(GWEIS)检查了每个变异的基因型-环境(G×E)效应,使得在ACEs暴露下,不同基因型的参与者在BMI上的差异。

测序流程

图3 测序分析

测序数据分析部分,测序reads使用Sentieon进行从fastq到vcf的全流程处理。Sentieon遵循了测序数据相关质控结果统计及GATK最佳实践流程。Sentieon在处理大规模队列样本时,在具有极速分析优势的同时保证了分析结果的可靠性。

Sentieon软件团队拥有丰富的软件开发及算法优化工程经验,致力于解决生物数据分析中的速度与准确度瓶颈,为来自于分子诊断、药物研发、临床医疗、人群队列、动植物等多个领域的合作伙伴提供高效精准的软件解决方案,共同推动基因技术的发展。

截至2023年3月份,Sentieon已经在全球范围内为1300+用户提供服务,被世界一级影响因子刊物如NEJM、Cell、Nature等广泛引用,引用次数超过700篇。此外,Sentieon连续数年摘得了Precision FDA、Dream Challenges等多个权威评比的桂冠,在业内获得广泛认可。

文献结论

图4 文献结论(部分)

This unique examination highlights several of the interactive effects between genetics and behavioral life experiences, and the consequences thereof on population health. Particularly, this study shows that the largely preventable negative health impacts of ACEs modulate purely genetic associations to an often detrimental effect on health. Simply stated, poor health outcomes result from lifestyle-driven events, and these health outcomes increase notably with specific genetic mutations. Conversely, a number of variants have already been shown to play a strong role in the increase of unhealthy BMI levels; when considered in tandem with environmental events such as ACEs, these effects can multiply in strength, resulting in a much worse state of disease. Thus, future emphasis in large population health studies must be placed on the strongly negative impact of adverse events encountered in childhood and the interactive effects of these events with specific genetic variations. Considering a patient’s social environment such as adverse experiences in childhood will provide a more complete clinical arsenal for overall better patient health.

总结

该研究使用了包括全外显子测序(Sentieon用于全流程数据分析)、电子健康记录、ACEs调查结果及全基因组-环境交互研究(GWEIS)等方法探索了ACEs、遗传因素和BMI之间的关系。

目录
打赏
0
1
1
0
59
分享
相关文章
Scaling Law或将终结?哈佛MIT预警:低精度量化已无路可走,重磅研究掀翻AI圈
哈佛大学和麻省理工学院的研究人员最近发布了一项重磅研究,对Scaling Law在低精度量化中的应用提出严重质疑。研究表明,随着训练数据增加,低精度量化带来的性能损失也增大,且与模型大小无关。这挑战了通过增加规模提升性能的传统观点,提醒我们在追求效率时不能忽视性能损失。该研究结果在AI圈内引发广泛讨论,提示未来需探索其他方法来提高模型效率,如混合精度训练、模型压缩及新型硬件架构。论文地址:https://arxiv.org/pdf/2411.04330。
55 11
牛津光计算论文登Nature正刊,分析帕金森患者步态准确率达92.2%
【9月更文挑战第23天】牛津大学研究人员在《自然》杂志上发表了一篇关于光计算的重要论文,展示了一种利用光的局部相干性增强光子计算并行性的新方法。该技术通过部分相干光与重建方法结合,提高了处理效率和并行性,同时降低了对相移器和微环谐振器的依赖,展示了在光子张量核心中的应用潜力,并在实际计算任务中实现了高准确率。这项突破有望推动光子处理器在人工智能领域的广泛应用。
71 5
【江西省研究生数学建模竞赛】第三题 植物的多样性 建模方案及参考文献
本文提供了江西省研究生数学建模竞赛第三题“植物的多样性”的建模方案、参考文献和可视化示例,探讨了如何通过数学模型研究植物数量变化规律并提出保持森林多样性的策略。
72 0
【江西省研究生数学建模竞赛】第三题 植物的多样性 建模方案及参考文献
文献解读农业系列第八期|《有害突变在多倍体棉花中积累速度快于二倍体棉花,且在亚基因组间不平衡》
该研究为基因组多倍体化提供了一个全基因组视角,对理解有害突变的进化命运具有重要的意义。
66 2
ICLR 2024 Spotlight:单模型斩获蛋白质突变预测榜一!西湖大学提出基于结构词表方法
【6月更文挑战第1天】西湖大学团队研发的蛋白质语言模型SaProt,在结构词表方法下,于蛋白质突变预测任务中荣登榜首。SaProt利用Foldseek编码的结构标记理解蛋白质行为,超越现有基准模型,在10个下游任务中表现出色。尽管训练资源需求大,且有特定任务优化空间,但该模型为生物医学研究带来新工具,促进科学理解与合作。论文链接:[https://www.biorxiv.org/content/10.1101/2023.10.01.560349v4](https://www.biorxiv.org/content/10.1101/2023.10.01.560349v4)
266 7
JCR一区5.4分|经典~非肿瘤机器学习筛选生物标志物+qPCR
本文介绍了一项使用机器学习算法识别间变性甲状腺癌(ATC)新型生物标志物和免疫浸润特征的研究。该研究发表在2023年9月的《Journal of Endocrinological Investigation》上,IF为5.4。通过对GEO数据库中的RNA测序数据进行分析,研究人员鉴定出425个差异表达基因,并利用LASSO和SVM-RFE算法确定了4个ATC特征基因(ADM、PXDN、MMP1和TFF3)。这些基因在诊断、药物敏感性和免疫微环境中具有潜在价值,可能成为ATC诊断和治疗的生物标志物。
225 0
文献速读|别人家的孟德尔随机化,全基因组纯生信30分Nature子刊
Nature Genetics上的一篇高影响力(IF=30.8)文章利用孟德尔随机化分析了暴食症(BED)的遗传基础。研究通过机器学习预测个体患BED概率,进行全基因组关联研究,识别了与铁代谢相关的基因位点,如HFE、MCHR2、LRP11及APOE。这些发现揭示了BED的遗传信号与铁代谢的关联,为理解这种疾病的病理生理学提供了新见解,并为治疗研究指明方向。文章中还包括多个图表展示分析结果。读者可以通过后台回复特定代码获取文献。
231 0
Nature子刊 | 谭济民、夏波等提出基因组构象预测模型及高通量计算遗传筛选方法
Nature子刊 | 谭济民、夏波等提出基因组构象预测模型及高通量计算遗传筛选方法
111 0
AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等