【数据结构与算法 | 基础篇】[数组专题]力扣88

简介: 【数据结构与算法 | 基础篇】[数组专题]力扣88

1. 力扣88 : 合并两个有序数组

题 :


给你两个按 非递减顺序 排列的整数数组 nums1 和 nums2,另有两个整数 m 和 n ,分别表示 nums1 和 nums2 中的元素数目。


请你 合并 nums2 到 nums1 中,使合并后的数组同样按 非递减顺序 排列。


注意:最终,合并后数组不应由函数返回,而是存储在数组 nums1 中。为了应对这种情况,nums1 的初始长度为 m + n,其中前 m 个元素表示应合并的元素,后 n 个元素为 0 ,应忽略。nums2 的长度为 n 。

示例 1:


输入:nums1 = [1,2,3,0,0,0], m = 3, nums2 = [2,5,6], n = 3

输出:[1,2,2,3,5,6]

解释:需要合并 [1,2,3] 和 [2,5,6] 。

合并结果是 [1,2,2,3,5,6] ,其中斜体加粗标注的为 nums1 中的元素。

示例 2:

输入:nums1 = [1], m = 1, nums2 = [], n = 0

输出:[1]

解释:需要合并 [1] 和 [] 。

合并结果是 [1] 。

示例 3:


输入:nums1 = [0], m = 0, nums2 = [1], n = 1

输出:[1]

解释:需要合并的数组是 [] 和 [1] 。

合并结果是 [1] 。

注意,因为 m = 0 ,所以 nums1 中没有元素。nums1 中仅存的 0 仅仅是为了确保合并结果可以顺利存放到 nums1 中。


提示:

  • nums1.length == m + n
  • nums2.length == n
  • 0 <= m, n <= 200
  • 1 <= m + n <= 200
  • -109 <= nums1[i], nums2[j] <= 109

进阶:你可以设计实现一个时间复杂度O(m + n) 的算法解决此问题吗?

思路 : 调用Arrays数组工具类中的sort方法.

解1 :

class Solution {
    public void merge(int[] nums1, int m, int[] nums2, int n) {
        int k = m + n;
        int a = 0;
        for(int i = m; i < k; i++) {
            nums1[i] = nums2[a++];
        }
        Arrays.sort(nums1);
    }
}

思路2 : 借助辅助数组

解 :

class Solution {
    public void merge(int[] nums1, int m, int[] nums2, int n) {
        int k = m + n;
        int[] arr = new int[k];
        int o1 = 0;
        int o2 = 0;
        int a = 0;
        while (o1 < m && o2 < n) {
            if(nums1[o1] > nums2[o2]) {
                arr[a++] = nums2[o2++];
            } else {
                arr[a++] = nums1[o1++];
            }
        }
 
        while(o1 < m) {
            arr[a++] = nums1[o1++];
        }
        while(o2 < n) {
            arr[a++] = nums2[o2++];
        }
        for(int i = 0; i < a; i++) {
            nums1[i] = arr[i];
        }
    }
}
相关文章
|
19天前
|
Go
【LeetCode 热题100】DP 实战进阶:最长递增子序列、乘积最大子数组、分割等和子集(力扣300 / 152/ 416 )(Go语言版)
本文深入解析三道经典的动态规划问题:**最长递增子序列(LIS)**、**乘积最大子数组** 和 **分割等和子集**。 - **300. LIS** 通过 `dp[i]` 表示以第 `i` 个元素结尾的最长递增子序列长度,支持 O(n²) 动态规划与 O(n log n) 的二分优化。 - **152. 乘积最大子数组** 利用正负数特性,同时维护最大值与最小值的状态转移方程。 - **416. 分割等和子集** 转化为 0-1 背包问题,通过布尔型 DP 实现子集和判断。 总结对比了三题的状态定义与解法技巧,并延伸至相关变种问题,助你掌握动态规划的核心思想与灵活应用!
43 1
|
3月前
|
存储 监控 算法
关于员工上网监控系统中 PHP 关联数组算法的学术解析
在当代企业管理中,员工上网监控系统是维护信息安全和提升工作效率的关键工具。PHP 中的关联数组凭借其灵活的键值对存储方式,在记录员工网络活动、管理访问规则及分析上网行为等方面发挥重要作用。通过关联数组,系统能高效记录每位员工的上网历史,设定网站访问权限,并统计不同类型的网站访问频率,帮助企业洞察员工上网模式,发现潜在问题并采取相应管理措施,从而保障信息安全和提高工作效率。
54 7
|
4月前
|
存储 人工智能 算法
C 408—《数据结构》算法题基础篇—数组(通俗易懂)
408考研——《数据结构》算法题基础篇之数组。(408算法题的入门)
171 23
|
6月前
|
算法 容器
【算法】——双指针算法合集(力扣)
移动零,复写零,快乐数,盛最多水的容器,有效三角形的个数,和为s的两个数(查找总价格为目标值的两个商品 ),三数之和,四数之和
|
8月前
|
算法 程序员 索引
数据结构与算法学习七:栈、数组模拟栈、单链表模拟栈、栈应用实例 实现 综合计算器
栈的基本概念、应用场景以及如何使用数组和单链表模拟栈,并展示了如何利用栈和中缀表达式实现一个综合计算器。
129 1
数据结构与算法学习七:栈、数组模拟栈、单链表模拟栈、栈应用实例 实现 综合计算器
|
8月前
|
存储 算法 定位技术
数据结构与算法学习二、稀疏数组与队列,数组模拟队列,模拟环形队列
这篇文章主要介绍了稀疏数组和队列的概念、应用实例以及如何使用数组模拟队列和环形队列的实现方法。
94 0
数据结构与算法学习二、稀疏数组与队列,数组模拟队列,模拟环形队列
|
8月前
|
索引
力扣(LeetCode)数据结构练习题(3)------链表
力扣(LeetCode)数据结构练习题(3)------链表
183 0
|
8月前
力扣(LeetCode)数据结构练习题(2)
力扣(LeetCode)数据结构练习题(2)
66 0
|
8月前
|
存储
力扣(LeetCode)数据结构练习题
力扣(LeetCode)数据结构练习题
117 0
|
8月前
|
算法 C++
Leetcode第53题(最大子数组和)
这篇文章介绍了LeetCode第53题“最大子数组和”的动态规划解法,提供了详细的状态转移方程和C++代码实现,并讨论了其他算法如贪心、分治、改进动态规划和分块累计法。
146 0