使用Python实现深度学习模型:迁移学习与预训练模型

本文涉及的产品
实时计算 Flink 版,5000CU*H 3个月
检索分析服务 Elasticsearch 版,2核4GB开发者规格 1个月
大数据开发治理平台 DataWorks,不限时长
简介: 使用Python实现深度学习模型:迁移学习与预训练模型

迁移学习是一种将已经在一个任务上训练好的模型应用到另一个相关任务上的方法。通过使用预训练模型,迁移学习可以显著减少训练时间并提高模型性能。在本文中,我们将详细介绍如何使用Python和PyTorch进行迁移学习,并展示其在图像分类任务中的应用。

什么是迁移学习?

迁移学习的基本思想是利用在大规模数据集(如ImageNet)上训练好的模型,将其知识迁移到特定的目标任务中。迁移学习通常包括以下步骤:

  • 加载预训练模型:使用已经在大规模数据集上训练好的模型。
  • 微调模型:根据目标任务的数据集对模型进行微调。

实现步骤

步骤 1:导入所需库

首先,我们需要导入所需的Python库:PyTorch用于构建和训练深度学习模型,Torchvision用于加载预训练模型和数据处理。

import torch
import torch.nn as nn
import torch.optim as optim
from torchvision import datasets, transforms, models
import numpy as np
import matplotlib.pyplot as plt

步骤 2:准备数据

我们将使用CIFAR-10数据集作为示例数据集。CIFAR-10是一个常用于图像分类任务的基准数据集,包含10个类别的60000张32x32彩色图像。

# 数据预处理
transform = transforms.Compose([
    transforms.Resize(224),  # 调整图像大小以适应预训练模型的输入要求
    transforms.ToTensor(),
    transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])

# 下载并加载训练和测试数据
train_dataset = datasets.CIFAR10(root='./data', train=True, download=True, transform=transform)
train_loader = torch.utils.data.DataLoader(dataset=train_dataset, batch_size=32, shuffle=True)

test_dataset = datasets.CIFAR10(root='./data', train=False, download=True, transform=transform)
test_loader = torch.utils.data.DataLoader(dataset=test_dataset, batch_size=32, shuffle=False)

步骤 3:加载预训练模型

我们将使用在ImageNet数据集上预训练的ResNet-18模型,并对其进行微调以适应CIFAR-10数据集。

# 加载预训练的ResNet-18模型
model = models.resnet18(pretrained=True)

# 修改模型的最后一层以适应CIFAR-10数据集
num_ftrs = model.fc.in_features
model.fc = nn.Linear(num_ftrs, 10)

# 将模型移动到GPU(如果可用)
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
model = model.to(device)

步骤 4:定义损失函数和优化器

我们选择交叉熵损失函数(Cross Entropy Loss)作为模型训练的损失函数,并使用Adam优化器进行优化。

criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=0.001)

步骤 5:训练模型

我们使用定义的预训练模型对CIFAR-10数据集进行训练。

num_epochs = 10

for epoch in range(num_epochs):
    model.train()
    running_loss = 0.0
    for i, (inputs, labels) in enumerate(train_loader):
        inputs, labels = inputs.to(device), labels.to(device)

        optimizer.zero_grad()
        outputs = model(inputs)
        loss = criterion(outputs, labels)
        loss.backward()
        optimizer.step()

        running_loss += loss.item()
        if i % 100 == 99:
            print(f'Epoch [{epoch+1}/{num_epochs}], Step [{i+1}/{len(train_loader)}], Loss: {running_loss / 100:.4f}')
            running_loss = 0.0

print('Finished Training')

步骤 6:评估模型

训练完成后,我们可以在测试数据集上评估模型的性能。

model.eval()
correct = 0
total = 0
with torch.no_grad():
    for inputs, labels in test_loader:
        inputs, labels = inputs.to(device), labels.to(device)
        outputs = model(inputs)
        _, predicted = torch.max(outputs.data, 1)
        total += labels.size(0)
        correct += (predicted == labels).sum().item()

print(f'Accuracy of the model on the test images: {100 * correct / total:.2f}%')

可视化一些预测结果

我们可以可视化一些模型的预测结果。

classes = ('plane', 'car', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck')

def imshow(img):
    img = img / 2 + 0.5  # unnormalize
    npimg = img.numpy()
    plt.imshow(np.transpose(npimg, (1, 2, 0)))
    plt.show()

# 获取一些随机测试图像
dataiter = iter(test_loader)
images, labels = dataiter.next()

# 打印图像
imshow(torchvision.utils.make_grid(images))

# 打印标签
print('GroundTruth: ', ' '.join(f'{classes[labels[j]]}' for j in range(4)))

# 打印预测结果
outputs = model(images.to(device))
_, predicted = torch.max(outputs, 1)

print('Predicted: ', ' '.join(f'{classes[predicted[j]]}' for j in range(4)))

总结

通过本教程,你学会了如何使用Python和PyTorch进行迁移学习,并在CIFAR-10数据集上应用预训练的ResNet-18模型进行图像分类。迁移学习是一种强大的技术,能够显著减少训练时间并提高模型性能,广泛应用于各种深度学习任务中。希望本教程能够帮助你理解迁移学习的基本原理和实现方法,并启发你在实际应用中使用迁移学习解决各种问题。

目录
相关文章
GitHub爆赞!终于有大佬把《Python学习手册》学习笔记分享出来了
这份笔记的目标是为了给出一份比较精炼,但是又要浅显易懂的Python教程。《Python学习手册》中文第四版虽然比较简单,但是措辞比较罗嗦,而且一个语法点往往散落在多个章节,不方便读者总结。 我在做笔记时,将一个知识点的内容都统筹在一个章节里面,因此提炼性大大提高。而且还有《Python学习手册》中文第四版的翻译在某些章节(可能难度较大?)措辞可能前后矛盾。当知识点提炼之后就能够很快的找到一些难以理解的概念的上下文,方便吃透这些难点。
|
2天前
|
机器学习/深度学习 调度 Python
SOFTS: 时间序列预测的最新模型以及Python使用示例
这是2024年4月《SOFTS: Efficient Multivariate Time Series Forecasting with Series-Core Fusion》中提出的新模型,采用集中策略来学习不同序列之间的交互,从而在多变量预测任务中获得最先进的性能。
15 4
|
4天前
|
机器学习/深度学习 存储 算法
基于YOLOv8与ByteTrack的车辆行人多目标检测与追踪系统【python源码+Pyqt5界面+数据集+训练代码】深度学习实战、目标追踪、运动物体追踪
基于YOLOv8与ByteTrack的车辆行人多目标检测与追踪系统【python源码+Pyqt5界面+数据集+训练代码】深度学习实战、目标追踪、运动物体追踪
|
4天前
|
机器学习/深度学习 存储 计算机视觉
基于YOLOv8深度学习的PCB板缺陷检测系统【python源码+Pyqt5界面+数据集+训练代码】目标检测
基于YOLOv8深度学习的PCB板缺陷检测系统【python源码+Pyqt5界面+数据集+训练代码】目标检测
|
4天前
|
机器学习/深度学习 存储 安全
基于YOLOv8深度学习的行人跌倒检测系统【python源码+Pyqt5界面+数据集+训练代码】目标检测
基于YOLOv8深度学习的行人跌倒检测系统【python源码+Pyqt5界面+数据集+训练代码】目标检测
|
4天前
|
机器学习/深度学习 传感器 算法
基于Mediapipe深度学习算法的手势识别系统【含python源码+PyqtUI界面+原理详解】-python手势识别 深度学习实战项目
基于Mediapipe深度学习算法的手势识别系统【含python源码+PyqtUI界面+原理详解】-python手势识别 深度学习实战项目
|
4天前
|
机器学习/深度学习 算法 数据库
【功能超全】基于OpenCV车牌识别停车场管理系统软件开发【含python源码+PyqtUI界面+功能详解】-车牌识别python 深度学习实战项目
【功能超全】基于OpenCV车牌识别停车场管理系统软件开发【含python源码+PyqtUI界面+功能详解】-车牌识别python 深度学习实战项目
|
4天前
|
机器学习/深度学习 算法 数据可视化
【深度学习实战】基于深度学习的图片风格快速迁移软件(Python源码+UI界面)
【深度学习实战】基于深度学习的图片风格快速迁移软件(Python源码+UI界面)
|
4天前
|
机器学习/深度学习 资源调度 PyTorch
【从零开始学习深度学习】15. Pytorch实战Kaggle比赛:房价预测案例【含数据集与源码】
【从零开始学习深度学习】15. Pytorch实战Kaggle比赛:房价预测案例【含数据集与源码】
|
4天前
|
机器学习/深度学习 存储 监控
基于YOLOv8深度学习的无人机视角高精度太阳能电池板检测与分析系统【python源码+Pyqt5界面+数据集+训练代码】深度学习实战、目标分割
基于YOLOv8深度学习的无人机视角高精度太阳能电池板检测与分析系统【python源码+Pyqt5界面+数据集+训练代码】深度学习实战、目标分割

热门文章

最新文章