(1)两者之间的目标不同:str主要面向客户,其目的是可读性,返回形式为用户友好性和可读性都比较高的字符串形式;而repr是面向Python解释器或者说Python开发人员,其目的是准确性,其返回值表示Python解释器内部的定义
(2)在解释器中直接输入变量,默认调用repr函数,而print(var)默认调用str函数
(3)repr函数的返回值一般可以用eval函数来还原对象
(4)两者分别调用对象的内建函数 __str__ ()和 __repr__ ()
建议35:分清静态方法staticmethod和类方法classmethod的使用场景
4. 库的使用
建议36:掌握字符串的基本用法
建议37:按需选择sort()和sorted()函数
sort()是列表在就地进行排序,所以不能排序元组等不可变类型。
sorted()可以排序任意的可迭代类型,同时不改变原变量本身。
建议38:使用copy模块深拷贝对象,区分浅拷贝(shallow copy)和深拷贝(deep copy)
建议39:使用Counter进行计数统计,Counter是字典类的子类,在collections模块中
建议40:深入掌握ConfigParse
建议41:使用argparse模块处理命令行参数
建议42:使用pandas处理大型CSV文件
Python本身提供一个CSV文件处理模块,并提供reader、writer等函数。
Pandas可提供分块、合并处理等,适用于数据量大的情况,且对二维数据操作更方便。
建议43:使用ElementTree解析XML
建议44:理解模块pickle的优劣
优势:接口简单、各平台通用、支持的数据类型广泛、扩展性强
劣势:不保证数据操作的原子性、存在安全问题、不同语言之间不兼容
建议45:序列化的另一个选择JSON模块:load和dump操作
建议46:使用traceback获取栈信息
建议47:使用logging记录日志信息
建议48:使用threading模块编写多线程程序
建议49:使用Queue模块使多线程编程更安全
5. 设计模式
建议50:利用模块实现单例模式
建议51:用mixin模式让程序更加灵活
建议52:用发布-订阅模式实现松耦合
建议53:用状态模式美化代码
6. 内部机制
建议54:理解build-in对象
建议55:__init__ ()不是构造方法,理解 __new__ ()与它之间的区别
建议56:理解变量的查找机制,即作用域
局部作用域
全局作用域
嵌套作用域
内置作用域
建议57:为什么需要self参数
建议58:理解MRO(方法解析顺序)与多继承
建议59:理解描述符机制
建议60:区别 __getattr__ ()与 __getattribute__ ()方法之间的区别
建议61:使用更安全的property
建议62:掌握元类metaclass
建议63:熟悉Python对象协议
建议64:利用操作符重载实现中缀语法
建议65:熟悉Python的迭代器协议
建议66:熟悉Python的生成器
建议67:基于生成器的协程和greenlet,理解协程、多线程、多进程之间的区别
建议68:理解GIL的局限性
建议69:对象的管理和垃圾回收
7. 使用工具辅助项目开发
建议70:从PyPI安装第三方包
建议71:使用pip和yolk安装、管理包
建议72:做paster创建包
建议73:理解单元测试的概念
建议74:为包编写单元测试
建议75:利用测试驱动开发(TDD)提高代码的可测性
建议76:使用Pylint检查代码风格
代码风格审查
代码错误检查
发现重复以及不合理的代码,方便重构
高度的可配置化和可定制化
支持各种IDE和编辑器的集成
能够基于Python代码生成UML图
能够与Jenkins等持续集成工具相结合,支持自动代码审查
建议77:进行高效的代码审查
建议78:将包发布到PyPI
8. 性能剖析与优化
建议79:了解代码优化的基本原则
建议80:借助性能优化工具
建议81:利用cProfile定位性能瓶颈
建议82:使用memory_profiler和objgraph剖析内存使用
建议83:努力降低算法复杂度
建议84:掌握循环优化的基本技巧
减少循环内部的计算
将显式循环改为隐式循环,当然这会牺牲代码的可读性
在循环中尽量引用局部变量
关注内层嵌套循环
建议85:使用生成器提高效率
建议86:使用不同的数据结构优化性能
建议87:充分利用set的优势
建议88:使用multiprocessing模块克服GIL缺陷
建议89:使用线程池提高效率
建议90:使用Cythonb编写扩展模块
读者福利:知道你对Python感兴趣,便准备了这套python学习资料
👉[[CSDN大礼包:《python安装包&全套学习资料》免费分享]](安全链接,放心点击)
对于0基础小白入门:
如果你是零基础小白,想快速入门Python是可以考虑的。
一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以找到适合自己的学习方案
包括:Python激活码+安装包、Python web开发,Python爬虫,Python数据分析,Python自动化测试学习等教程。带你从零基础系统性的学好Python!
零基础Python学习资源介绍
- ① Python所有方向的学习路线图,清楚各个方向要学什么东西
- ② 600多节Python课程视频,涵盖必备基础、爬虫和数据分析
- ③ 100多个Python实战案例,含50个超大型项目详解,学习不再是只会理论
- ④ 20款主流手游迫解 爬虫手游逆行迫解教程包
- ⑤ 爬虫与反爬虫攻防教程包,含15个大型网站迫解
- ⑥ 爬虫APP逆向实战教程包,含45项绝密技术详解
- ⑦ 超300本Python电子好书,从入门到高阶应有尽有
- ⑧ 华为出品独家Python漫画教程,手机也能学习
- ⑨ 历年互联网企业Python面试真题,复习时非常方便
👉Python学习路线汇总👈
Python所有方向的技术点做的整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。(全套教程文末领取哈)
👉Python必备开发工具👈
温馨提示:篇幅有限,已打包文件夹,获取方式在:文末
👉Python学习视频600合集👈
(1)Python所有方向的学习路线(新版)
这是我花了几天的时间去把Python所有方向的技术点做的整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。
最近我才对这些路线做了一下新的更新,知识体系更全面了。
(2)Python学习视频
包含了Python入门、爬虫、数据分析和web开发的学习视频,总共100多个,虽然没有那么全面,但是对于入门来说是没问题的,学完这些之后,你可以按照我上面的学习路线去网上找其他的知识资源进行进阶。
(3)100多个练手项目
我们在看视频学习的时候,不能光动眼动脑不动手,比较科学的学习方法是在理解之后运用它们,这时候练手项目就很适合了,只是里面的项目比较多,水平也是参差不齐,大家可以挑自己能做的项目去练练。