Python DataFrame初学者指南:轻松上手构建数据表格

简介: 【5月更文挑战第19天】本文是针对初学者的Pandas DataFrame指南,介绍如何安装Pandas、创建DataFrame(从字典或CSV文件)、查看数据(`head()`, `info()`, `describe()`)、选择与操作数据(列、行、缺失值处理、数据类型转换、排序、分组聚合)以及保存DataFrame到CSV文件。通过学习这些基础,你将能轻松开始数据科学之旅。

在Python的数据处理世界中,Pandas库及其核心数据结构DataFrame无疑是最受欢迎的。DataFrame提供了一个强大而灵活的方式来存储、操作和分析表格数据。对于初学者来说,理解并掌握DataFrame的基本概念和使用方法,是数据科学之旅的重要一步。本文将引导你轻松上手Python DataFrame,构建并操作数据表格。

一、安装Pandas库

首先,确保你的Python环境中已经安装了Pandas库。如果尚未安装,可以使用pip命令进行安装:

pip install pandas

二、创建DataFrame

DataFrame可以从多种数据源创建,如列表、字典、CSV文件等。下面是一些基本的创建方法:

1. 从字典创建

import pandas as pd

data = {
   
    'Name': ['Alice', 'Bob', 'Charlie'],
    'Age': [25, 30, 35],
    'City': ['New York', 'Paris', 'London']
}

df = pd.DataFrame(data)
print(df)

2. 从CSV文件创建

如果你有一个CSV文件,可以直接使用pd.read_csv()函数读取并创建DataFrame:

df = pd.read_csv('data.csv')
print(df)

三、查看DataFrame信息

1. 查看前几行数据

使用head()方法可以查看DataFrame的前几行数据:

print(df.head())  # 默认显示前5行
print(df.head(3))  # 显示前3行

2. 查看数据的基本信息

使用info()方法可以查看DataFrame的列名、数据类型、非空值数量等基本信息:

print(df.info())

3. 查看数据描述性统计

对于数值型列,可以使用describe()方法查看描述性统计信息,如计数、均值、标准差、最小值、25%分位数、中位数、75%分位数和最大值:

print(df.describe())  # 假设DataFrame中有数值型列

四、操作DataFrame

1. 选择数据

  • 选择列:使用列名选择单列或多列。
print(df['Name'])  # 选择Name列
print(df[['Name', 'Age']])  # 选择Name和Age列
  • 选择行:使用lociloc方法选择行。
print(df.loc[0])  # 选择第一行
print(df.iloc[1:3])  # 选择第二行到第三行(不包括第四行)

2. 数据清洗

  • 处理缺失值:使用dropna()删除包含缺失值的行或列,或使用fillna()填充缺失值。
df_no_na = df.dropna()  # 删除包含缺失值的行
df_filled = df.fillna('Unknown')  # 使用'Unknown'填充缺失值
  • 数据类型转换:使用astype()方法转换数据类型。
df['Age'] = df['Age'].astype(int)  # 将Age列转换为整数类型

3. 数据排序

使用sort_values()方法按指定列的值对DataFrame进行排序。

df_sorted = df.sort_values(by='Age')  # 按Age列的值排序

4. 数据分组与聚合

使用groupby()方法进行数据分组,然后结合聚合函数(如sum(), mean(), count()等)对分组数据进行操作。

grouped = df.groupby('City')['Age'].mean()  # 按City分组并计算Age的均值
print(grouped)

五、保存DataFrame

可以使用to_csv()方法将DataFrame保存到CSV文件中:

df.to_csv('output.csv', index=False)  # 将DataFrame保存到CSV文件,不保存索引列

六、总结

本文介绍了Pandas DataFrame的基本概念和常用操作,包括创建DataFrame、查看DataFrame信息、选择数据、数据清洗、数据排序、数据分组与聚合以及保存DataFrame。通过掌握这些基本操作,你可以轻松上手Python DataFrame,构建并操作数据表格,为数据分析和数据科学之旅打下坚实的基础。

相关文章
|
6天前
|
数据采集 NoSQL 关系型数据库
Python爬虫去重策略:增量爬取与历史数据比对
Python爬虫去重策略:增量爬取与历史数据比对
|
14天前
|
Python
解决Python报错:DataFrame对象没有concat属性的多种方法(解决方案汇总)
总的来说,解决“DataFrame对象没有concat属性”的错误的关键是理解concat函数应该如何正确使用,以及Pandas库提供了哪些其他的数据连接方法。希望这些方法能帮助你解决问题。记住,编程就像是解谜游戏,每一个错误都是一个谜题,解决它们需要耐心和细心。
60 15
|
9天前
|
数据采集 存储 缓存
Python爬虫与代理IP:高效抓取数据的实战指南
在数据驱动的时代,网络爬虫是获取信息的重要工具。本文详解如何用Python结合代理IP抓取数据:从基础概念(爬虫原理与代理作用)到环境搭建(核心库与代理选择),再到实战步骤(单线程、多线程及Scrapy框架应用)。同时探讨反爬策略、数据处理与存储,并强调伦理与法律边界。最后分享性能优化技巧,助您高效抓取公开数据,实现技术与伦理的平衡。
43 4
|
19天前
|
数据采集 搜索推荐 API
Python 原生爬虫教程:京东商品列表页面数据API
京东商品列表API是电商大数据分析的重要工具,支持开发者、商家和研究人员获取京东平台商品数据。通过关键词搜索、分类筛选、价格区间等条件,可返回多维度商品信息(如名称、价格、销量等),适用于市场调研与推荐系统开发。本文介绍其功能并提供Python请求示例。接口采用HTTP GET/POST方式,支持分页、排序等功能,满足多样化数据需求。
|
21天前
|
数据采集 存储 JSON
用Python爬虫抓取数据并保存为JSON的完整指南
用Python爬虫抓取数据并保存为JSON的完整指南
|
19天前
|
数据采集 API 数据格式
Python 原生爬虫教程:京东商品详情页面数据API
本文介绍京东商品详情API在电商领域的应用价值及功能。该API通过商品ID获取详细信息,如基本信息、价格、库存、描述和用户评价等,支持HTTP请求(GET/POST),返回JSON或XML格式数据。对于商家优化策略、开发者构建应用(如比价网站)以及消费者快速了解商品均有重要意义。研究此API有助于推动电商业务创新与发展。
|
数据可视化 Java Python
python编程:tabula、pdfplumber、camelot进行表格数据识别
python编程:tabula、pdfplumber、camelot进行表格数据识别
948 0
python编程:tabula、pdfplumber、camelot进行表格数据识别
|
2月前
|
机器学习/深度学习 存储 设计模式
Python 高级编程与实战:深入理解性能优化与调试技巧
本文深入探讨了Python的性能优化与调试技巧,涵盖profiling、caching、Cython等优化工具,以及pdb、logging、assert等调试方法。通过实战项目,如优化斐波那契数列计算和调试Web应用,帮助读者掌握这些技术,提升编程效率。附有进一步学习资源,助力读者深入学习。
|
2月前
|
人工智能 Java 数据安全/隐私保护
[oeasy]python081_ai编程最佳实践_ai辅助编程_提出要求_解决问题
本文介绍了如何利用AI辅助编程解决实际问题,以猫屎咖啡的购买为例,逐步实现将购买斤数换算成人民币金额的功能。文章强调了与AI协作时的三个要点:1) 去除无关信息,聚焦目标;2) 将复杂任务拆解为小步骤,逐步完成;3) 巩固已有成果后再推进。最终代码实现了输入验证、单位转换和价格计算,并保留两位小数。总结指出,在AI时代,人类负责明确目标、拆分任务和确认结果,AI则负责生成代码、解释含义和提供优化建议,编程不会被取代,而是会更广泛地融入各领域。
87 28
|
2月前
|
机器学习/深度学习 数据可视化 TensorFlow
Python 高级编程与实战:深入理解数据科学与机器学习
本文深入探讨了Python在数据科学与机器学习中的应用,介绍了pandas、numpy、matplotlib等数据科学工具,以及scikit-learn、tensorflow、keras等机器学习库。通过实战项目,如数据可视化和鸢尾花数据集分类,帮助读者掌握这些技术。最后提供了进一步学习资源,助力提升Python编程技能。