Transformer解码真实场景!Meta推出70M参数SceneScript模型

简介: 【5月更文挑战第12天】Meta AI Labs推出了70M参数的SceneScript模型,运用Transformer技术从视频中生成结构化场景描述,以编程语言方式表示,便于3D场景重建和理解。该模型无需依赖3D模型或CAD,能应用于建筑设计、电影游戏制作及机器人领域。尽管面临计算资源需求高、数据标注困难及与传统工具集成的挑战,但其灵活性、可扩展性和可解释性展现出广阔的应用前景。[论文链接](https://arxiv.org/pdf/2403.13064.pdf)

最近,Meta AI Labs的研究人员推出了一种名为SceneScript的新型模型,该模型利用Transformer技术,能够直接从视频序列中生成结构化的场景描述。这种场景描述以一种类似于编程语言的方式表示,由一系列结构化的命令组成,可以用于重建和理解复杂的3D场景。

SceneScript模型是一个基于Transformer的神经网络模型,它由一个编码器和一个解码器组成。编码器用于将输入的视频序列转换为一个场景的潜在表示,而解码器则利用这个潜在表示来生成场景的描述。

SceneScript模型的主要创新在于它能够直接从视频序列中生成结构化的场景描述,而不需要依赖传统的3D模型或CAD工具。这种结构化的场景描述可以用于重建和理解复杂的3D场景,为计算机视觉和机器人等领域的研究提供了新的思路。

SceneScript模型在许多领域都有着广泛的应用潜力。首先,在建筑和室内设计领域,SceneScript模型可以用于自动生成建筑平面图和室内设计图,提高设计效率和效果。其次,在电影和游戏制作领域,SceneScript模型可以用于自动生成场景描述,为电影和游戏制作提供更多的创意和可能性。此外,在机器人和自动驾驶领域,SceneScript模型可以用于理解和重建复杂的3D场景,为机器人和自动驾驶系统提供更多的环境信息。

与传统的3D模型或CAD工具相比,SceneScript模型具有以下几个优势:首先,SceneScript模型能够直接从视频序列中生成结构化的场景描述,而不需要依赖传统的3D模型或CAD工具。这种灵活性使得SceneScript模型可以应用于各种不同的场景和任务。其次,由于SceneScript模型是一个神经网络模型,它可以随着数据的增加而不断改进和优化。这使得SceneScript模型在处理复杂的3D场景时具有更好的可扩展性。此外,SceneScript模型生成的结构化的场景描述具有很好的可解释性,可以方便地进行修改和调整。这使得SceneScript模型在实际应用中具有更高的可控性和可维护性。

然而,SceneScript模型也面临着一些挑战。首先,由于SceneScript模型需要处理复杂的3D场景,对计算资源的要求较高,这可能会限制其在实际应用中的广泛应用。其次,SceneScript模型的训练需要大量的标注数据,而这些数据的获取和标注都需要大量的时间和精力。这可能会限制SceneScript模型的训练效果和泛化能力。此外,由于SceneScript模型生成的结构化的场景描述与传统的3D模型或CAD工具有所不同,如何将这些描述与现有的工具和技术进行集成和交互也是一个挑战。

论文地址:https://arxiv.org/pdf/2403.13064.pdf

目录
相关文章
|
8月前
|
机器学习/深度学习 人工智能 测试技术
Meta无限长文本大模型来了:参数仅7B,已开源
【4月更文挑战第26天】Meta 研究团队推出7亿参数的MEGALODON,这是一个专为无限长文本序列建模设计的神经网络架构。通过复数指数移动平均(CEMA)和时间步归一化层等技术创新,MEGALODON在效率和准确性上超越Transformer,且在多种基准测试中表现优秀。源代码已开源,为长序列建模提供新工具,但面临资源限制和处理极端长度序列的挑战。[论文链接](https://arxiv.org/pdf/2404.08801.pdf)
159 3
|
人工智能 自然语言处理 物联网
中文LLaMA模型和指令精调的Alpaca大模型:中文数据进行二次预训练,进一步提升了中文基础语义理解能力
中文LLaMA模型和指令精调的Alpaca大模型:中文数据进行二次预训练,进一步提升了中文基础语义理解能力
中文LLaMA模型和指令精调的Alpaca大模型:中文数据进行二次预训练,进一步提升了中文基础语义理解能力
|
1月前
|
机器学习/深度学习 人工智能 Linux
SAM 2.1:Meta 开源的图像和视频分割,支持实时视频处理
SAM 2.1是由Meta(Facebook的母公司)推出的先进视觉分割模型,专为图像和视频处理设计。该模型基于Transformer架构和流式记忆设计,实现了实时视频处理,并引入了数据增强技术,提升了对视觉相似物体和小物体的识别能力。SAM 2.1的主要功能包括图像和视频分割、实时视频处理、用户交互式分割、多对象跟踪以及改进的遮挡处理能力。
83 6
SAM 2.1:Meta 开源的图像和视频分割,支持实时视频处理
|
7月前
|
机器学习/深度学习 缓存
Block Transformer:通过全局到局部的语言建模加速LLM推理
Block Transformer是一种优化自回归语言模型推理效率的新架构,通过块级自注意力来平衡全局和局部依赖,提高吞吐量。模型包含嵌入器、块解码器和令牌解码器,其中块解码器处理全局依赖,令牌解码器处理局部细节。这种方法减轻了KV缓存的延迟和内存开销,尤其是在长序列处理中。实验显示,尽管Block Transformer参数量增加,但推理速度显著提升,尤其是在大块长度和优化的组件比例下,实现了性能与速度的平衡。
340 7
|
5月前
|
数据采集 机器学习/深度学习 人工智能
Meta朱泽园揭秘大模型内心世界:不同于人类的2级推理
【8月更文挑战第26天】近期,Meta AI的研究者们在arXiv发布了一篇题为《语言模型的物理学:第2.1部分,小学数学和隐藏推理过程》的论文。该研究通过一系列实验揭示了大型语言模型(LLMs)在解决数学问题时的隐藏推理机制,并探讨了LLMs是否具有真正的推理能力及其实现方式是否与人类类似。研究发现LLMs不仅能记忆解题模式,还能进行适应性调整,表现出独特的二级推理过程。尽管其方法不同于人类,但在解决数学问题上能获得同样甚至更好的效果。此外,研究还指出改进训练数据质量、优化模型结构以及探索LLMs与其他AI技术的融合将是未来研究的重要方向。
84 2
|
5月前
|
人工智能 自然语言处理 计算机视觉
Meta发布混合多模态模型—Chameleon
【8月更文挑战第5天】Meta AI团队近期发布了Chameleon,一种基于早期融合的混合多模态模型,能在任意顺序下理解和生成图像与文本。此34B参数模型经10万亿token训练,展现出卓越的多模态处理能力。Chameleon在视觉问答、图像字幕生成等任务中成绩亮眼,特别是在图像字幕生成上表现优异,文本生成上亦具竞争力,且有一定的图像生成能力。其性能在新混合模态生成评估中媲美甚至超越大型模型。尽管如此,Chameleon仍面临特定任务处理及计算资源需求等方面的挑战。论文已发布于arXiv。
99 11
|
5月前
Meta开发System 2蒸馏技术,Llama 2对话模型任务准确率接近100%
【8月更文挑战第1天】Meta开发的System 2蒸馏技术可将大型语言模型从System 2模式转换至System 1模式, 实现直接生成最终答案而非中间推理步骤。此技术显著提升了性能, 如Llama 2对话模型准确率接近100%。通过自监督学习及方法如Rephrase and Respond、System 2注意力(S2A) 和 Branch-Solve-Merge(BSM), 模型在多项任务上取得优异成绩。[论文](https://arxiv.org/pdf/2407.06023v2)
68 6
|
7月前
|
自然语言处理 测试技术 人工智能
Meta等最新研究:多token预测,提升大模型推理效率
【6月更文挑战第2天】Meta等机构的研究人员提出了一种新的大型语言模型训练方法——多token预测,以提高样本效率和推理速度。该方法要求模型同时预测多个接下来的token,而非传统的单一token预测,从而减少局部模式依赖,提高模型的宏观决策能力。实验表明,这种方法在提升模型性能和推理速度方面效果显著,尤其在编程任务中表现出色。然而,多token预测可能需要更多计算资源,并不适用于所有NLP任务,其在自然语言处理领域的应用仍有待深入研究。论文链接:https://arxiv.org/abs/2404.19737
187 7
|
8月前
|
JSON 数据处理 数据格式
yolov8训练自己的数据集以及权重转化为.engine格式(超详细)
yolov8训练自己的数据集以及权重转化为.engine格式(超详细)
597 0
|
8月前
|
机器学习/深度学习 自然语言处理 算法
深度解析预训练权重的本质和作用
深度解析预训练权重的本质和作用
301 1