3D AI生成出新玩法了:无需数小时,只要45秒,单张图片即可生成 3D模型

简介: 3D AI生成出新玩法了:无需数小时,只要45秒,单张图片即可生成 3D模型

45 秒单张图片变 3D,无需大量 3D 数据和逐物体优化。


3D AI 生成最近发展得如火如荼,不少最新工作都能够从一句话 / 一张图生成高质量的三维模型。然而从去年下半年的 DreamFusion 和 Magic3D 到最新的 ProlificDreamer,绝大多数工作都通过对每个物体进行优化的方式来生成 3D 模型。这种方式使得现有的 3D AI 生成方法都非常耗时,譬如 ProlificDreamer 的作者就曾在知乎上表示方法目前的主要局限之一便是生成时间太慢了!


“一般而言,使用 stable-diffusion 生成一张图片在 PC 上只需要几秒钟,哪怕微调 LoRA 也很快;然而,我们生成一个 3D 物体需要数个小时,尤其是分辨率越高越慢。这主要是因为我们本质上还是借助于随机梯度下降来优化 3D 表示(NeRF 或 Mesh)的参数,这样的优化过程需要很多步的迭代,并且对 GPU 的显存也有一定要求。我们最终展示的效果是 512 分辨率的结果,这些结果的优化确实非常耗时,所以目前个人使用者还是很难在 PC 上直接使用我们的算法。


高昂的推断成本不仅使得研究者的实验迭代变慢,也阻碍了 3D AIGC 技术对于很多实时应用的商业落地和推广。


然而就在最近,来自 UCSD 等机构的研究者发布了一项最新工作,One-2-3-45,它摆脱了逐物体优化的生成范式,能够在 45 秒内从任意单张图片 / 文本生成 3D 纹理网格,且在测试时无需针对每个物体进行优化。



Project Page: http://one-2-3-45.com 

Paper: https://arxiv.org/pdf/2306.16928.pdf

Code: https://github.com/One-2-3-45/One-2-3-45

Demo:https://huggingface.co/spaces/One-2-3-45/One-2-3-45


,时长00:53

单张图片生成 3D


通过与现有的文生图模型(如 DALL-E2)结合,One-2-3-45 也支持从任意文本生成 3D 模型。


,时长00:51

文本生成 3D


论文一发布,就被推特大佬 AK 宣传转发,并受到网友的广泛关注。



网友 Xin Kong 评论到:“这是最好的时代,也是最坏的时代。这可能是 3D 扩散生成中的 Instant NGP 时刻。30 分钟 ->45 秒,无分数蒸馏,2D 视图到 3D 是必经之路!”



方法


由于 3D 数据的稀缺性,学术界最近的绝大多数 3D AI 生成工作都通过利用 2D 扩散生成模型来指导 3D 表示(如 NeRF)的优化,从而实现 3D 内容生成。One-2-3-45 没有遵循这个范式,而是先利用 2D 扩散模型生成多视角图像,然后希望利用这些多视角图像来重建 3D 模型。


具体而言,One-2-3-45 利用了一个基于视角控制的 2D 扩散生成模型,Zero123。该模型通过微调 Stable Diffusion,实现了输入单张图片和一个相机的相对位姿变换,便能够预测该物体在变换后的视角下的对应图像的能力。



通过借助这类 2D 扩散生成模型,我们能够从一张图片预测生成对应的多视角图像。



一个很自然的想法,便是将这些多视角图像传给经典的基于 NeRF 的重建方法来生成 3D 模型。然而研究者发现这样并不能生成高质量的 3D 模型(如下图所示)。



这其实是因为网络预测的多视角图像具有潜在的不一致性。然而对于基于 NeRF 的优化类重建方法,一些微小的不一致便已足以使得方法崩溃。



如上图所示,通过将预测的多视角图像与真实数据进行对比,研究者发现 Zero123 预测的多视角图像虽然不具备像素级别的高精确度(PSNR 不高)。但整体轮廓(mIoU)以及语义 / 感知相似性(CLIP 相似度)都很高,尤其当相机相对位姿变换较小时。这些结果说明了用网络预测的多视角图像进行三维重建的可能性。


在 One-2-3-45 中,研究者使用了基于 cost volume 的可泛化 NeRF 类的方法来实现三维重建。这类方法将多视角图像作为输入,在训练后能够直接推断 3D 内容而无需额外优化。由于这类方法通过从训练数据学习了有关多视角预测不一致性的先验知识,他们更有希望能从不一致的多视角预测中生成 3D 模型。


One-2-3-45 方法流程图


具体来说,One-2-3-45 首先通过对多视角图像抽取 2D 图像特征,并通过相机位姿来构建 3D cost volume。然后 One-2-3-45 通过 3D 卷积神经网络来从 3D cost volume 推断输入多视角图像对应的潜在 3D 几何,并最后通过 MLP 来预测物体的 SDF 和颜色,进行体积渲染。


通过结合 2D 扩散生成模型和基于 cost volume 的可泛化 NeRF,One-2-3-45 能够在一次前向传播中生成 3D 模型。摆脱了耗时的逐物体 3D 优化后,One-2-3-45 生成一个高质量 3D 纹理网格的时间从数小时降到了 45 秒!


然而在实现这个想法的过程中,研究人员却遇到了一些具体的挑战:


1. 现有的可泛化 NeRF 方法大都是将具有一致性的多视角图像作为输入(渲染自真实物体)。但如何将这类方法扩展到不完全一致的多视角预测上呢?


2. 现有的可泛化 NeRF 方法很多都专注于前景区域的重建。但在 3D 生成的问题中,我们希望得到 360 度的完整模型。


3. 由于 Zero123 采用了球坐标系来描述相对相机位姿。为了提供多视角图像的相机位姿给重建模块,我们需要得到输入图片对应的相机俯仰角(elevation)。


为了解决这些挑战,研究者提出了一系列关键的训练策略(如分阶段预测多视角图像)和一个俯仰角预测模块。详情请参考原论文。


研究者还特别指出由于重建模块主要依赖于局部的对应关系(correspondence),因此其只需少量的数据进行训练,并具有很强的可泛化性。


与现有 3D AI 生成方法的比较


研究者表示,得益于 “2D 多视角预测 + 3D 可泛化重建” 的技术路线,One-2-3-45 与现有的 3D AI 生成方法相比,除了推断时间显著降低外,还在输入的多样性、输出的几何表示、结果的 3D 一致性、与输入的相似性,以及所需的 3D 数据规模上,具有多方面的优势。



具体来说,许多基于逐物体优化的方法虽然能生成高质量 3D 内容,但目前只支持文字生成 3D(如 DreamFusion,Magic3D 和 ProlificDreamer)。而 One-2-3-45 既支持文字生成 3D 也支持图片生成 3D。下图展示了 One-2-3-45 与现有的主要图生 3D 的方法的对比。


,时长00:06

与现有图生 3D 方法的比较


可以看到一些基于 NeRF 优化的方法(如 RealFusion 和 3D Fuse)虽然从新视角合成的角度上得到了还不错的结果,但 NeRF 所输出的几何质量却不尽人意。类似地,Point-E 的原生输出是稀疏点云,在经过后处理重建后仍易存在部分区域破碎缺失的问题。而 One-2-3-45 通过预测 SDF 来提取网格,输出的几何质量要更具优势。


另外一个重要的点便是现有方法的输出没有完全遵循(adherence)输入图片的指示。比如对于第一列的背包,Zero123+SD 生成的背包只有一条背带;Shap-E 生成的背包没有背带。对于第二列的单只灭火器,Shap-E 和 Point-E 都预测了两个两个连体的灭火器。对于第四列的凳子,可以看到只有 One-2-3-45 和 3DFuse 保留了输入图片的椅腿结构。但需要注意的是,3DFuse 生成的所有 3D 内容在具体风格和细节上均与输入图片有较大出入。


此外,研究者还指出基于逐物体优化的方法通常会遇到 3D 一致性的挑战。他们生成的 3D 模型通常会出现多面现象(或者 Janus 问题)。比如在上图中,RealFusion 生成了一个双面背包。相比之下,One-2-3-45 生成结果的 3D 一致性要好很多。


研究者还提到了 OpenAI 的 Point-E 和 Shap-E 在训练时用到了数百万级别的内部 3D 数据。由于 3D 数据的稀缺性,这样的训练数据规模目前对于很多研究者 / 机构来说还是比较严苛的条件。


,时长00:06

与现有文生 3D 方法的比较


可以看到除了之前提过的问题外,现有的文生 3D 方法对输入文本的把握能力并不是很强。比如,对于输入文本 “一棵空心的大树”,“一只有绿腿的橙色凳子”,“一顶哈瓦那风格菠萝形状的帽子” 以及 “一只木头质地的蘑菇” 等,现有方法都无法生成精确对应的 3D 内容。相比之下,One-2-3-45 所采纳的在 2D 生成对应图片再提升到 3D 似乎是一条能够对输入文本有更加精确控制的路线。


结语


One-2-3-45 提出了 “2D 多视角预测 + 3D 可泛化重建” 这样一项新颖的 3D AI 生成玩法,并在许多方面都展示出了其优越性。虽然目前 One-2-3-45 的生成质量可能还比不上部分基于逐物体优化的文生 3D 模型,但这个新玩法的探索和提高空间可能是充满潜力的。

相关文章
|
1月前
|
人工智能 自然语言处理 IDE
模型微调不再被代码难住!PAI和Qwen3-Coder加速AI开发新体验
通义千问 AI 编程大模型 Qwen3-Coder 正式开源,阿里云人工智能平台 PAI 支持云上一键部署 Qwen3-Coder 模型,并可在交互式建模环境中使用 Qwen3-Coder 模型。
359 109
|
10天前
|
人工智能 Java API
AI 超级智能体全栈项目阶段一:AI大模型概述、选型、项目初始化以及基于阿里云灵积模型 Qwen-Plus实现模型接入四种方式(SDK/HTTP/SpringAI/langchain4j)
本文介绍AI大模型的核心概念、分类及开发者学习路径,重点讲解如何选择与接入大模型。项目基于Spring Boot,使用阿里云灵积模型(Qwen-Plus),对比SDK、HTTP、Spring AI和LangChain4j四种接入方式,助力开发者高效构建AI应用。
407 122
AI 超级智能体全栈项目阶段一:AI大模型概述、选型、项目初始化以及基于阿里云灵积模型 Qwen-Plus实现模型接入四种方式(SDK/HTTP/SpringAI/langchain4j)
|
22天前
|
机器学习/深度学习 数据采集 人工智能
PyTorch学习实战:AI从数学基础到模型优化全流程精解
本文系统讲解人工智能、机器学习与深度学习的层级关系,涵盖PyTorch环境配置、张量操作、数据预处理、神经网络基础及模型训练全流程,结合数学原理与代码实践,深入浅出地介绍激活函数、反向传播等核心概念,助力快速入门深度学习。
74 1
|
13天前
|
机器学习/深度学习 人工智能 自然语言处理
AI Compass前沿速览:Qwen3-Max、Mixboard、Qwen3-VL、Audio2Face、Vidu Q2 AI视频生成模型、Qwen3-LiveTranslate-全模态同传大模型
AI Compass前沿速览:Qwen3-Max、Mixboard、Qwen3-VL、Audio2Face、Vidu Q2 AI视频生成模型、Qwen3-LiveTranslate-全模态同传大模型
170 13
AI Compass前沿速览:Qwen3-Max、Mixboard、Qwen3-VL、Audio2Face、Vidu Q2 AI视频生成模型、Qwen3-LiveTranslate-全模态同传大模型
|
13天前
|
人工智能 负载均衡 API
Vercel 发布 AI Gateway 神器!可一键访问数百个模型,助力零门槛开发 AI 应用
大家好,我是Immerse,独立开发者、AGI实践者。分享编程、AI干货、开源项目与个人思考。关注公众号“沉浸式趣谈”,获取独家内容。Vercel新推出的AI Gateway,统一多模型API,支持自动切换、负载均衡与零加价调用,让AI开发更高效稳定。一行代码切换模型,告别接口烦恼!
146 1
Vercel 发布 AI Gateway 神器!可一键访问数百个模型,助力零门槛开发 AI 应用
|
1月前
|
人工智能 监控 Kubernetes
稳定支撑大规模模型调用,携程旅游的 AI 网关实践
为了进一步提升服务水平和服务质量,携程很早就开始在人工智能大模型领域进行探索。而随着工作的深入,大模型服务的应用领域不断扩大,公司内部需要访问大模型服务的应用也越来越多,不可避免的就遇到了几个问题,我们自然就会想到使用网关来对这些服务接入进行统一管理,并增加各种切面上的流量治理功能。
154 37
|
17天前
|
机器学习/深度学习 人工智能 自然语言处理
如何让AI更“聪明”?VLM模型的优化策略与测试方法全解析​
本文系统解析视觉语言模型(VLM)的核心机制、推理优化、评测方法与挑战。涵盖多模态对齐、KV Cache优化、性能测试及主流基准,助你全面掌握VLM技术前沿。建议点赞收藏,深入学习。
239 8
AI:百度飞桨EasyDL多门视频课程,手把手教你如何定制高精度AI模型
AI:百度飞桨EasyDL多门视频课程,手把手教你如何定制高精度AI模型
|
10天前
|
人工智能 安全 中间件
阿里云 AI 中间件重磅发布,打通 AI 应用落地“最后一公里”
9 月 26 日,2025 云栖大会 AI 中间件:AI 时代的中间件技术演进与创新实践论坛上,阿里云智能集团资深技术专家林清山发表主题演讲《未来已来:下一代 AI 中间件重磅发布,解锁 AI 应用架构新范式》,重磅发布阿里云 AI 中间件,提供面向分布式多 Agent 架构的基座,包括:AgentScope-Java(兼容 Spring AI Alibaba 生态),AI MQ(基于Apache RocketMQ 的 AI 能力升级),AI 网关 Higress,AI 注册与配置中心 Nacos,以及覆盖模型与算力的 AI 可观测体系。
151 10
|
16天前
|
存储 人工智能 Serverless
函数计算进化之路:AI 应用运行时的状态剖析
AI应用正从“请求-响应”迈向“对话式智能体”,推动Serverless架构向“会话原生”演进。阿里云函数计算引领云上 AI 应用 Serverless 运行时技术创新,实现性能、隔离与成本平衡,开启Serverless AI新范式。
226 12

热门文章

最新文章