Transformers 加速的一些常用技巧

本文涉及的产品
实时数仓Hologres,5000CU*H 100GB 3个月
智能开放搜索 OpenSearch行业算法版,1GB 20LCU 1个月
实时计算 Flink 版,1000CU*H 3个月
简介: Transformers架构因自注意力机制面临训练过程中的内存不足和GPU限制问题,主要源于大量参数、自注意力计算的高复杂度以及激活状态存储。为解决这些问题,常用策略包括:固定长度填充(使用注意力掩码处理填充部分)、动态填充(每批内序列长度相同)和等长匹配(按序列长度分组批量处理),以及自动混合精度(AMP)训练,通过float16降低内存使用和加速计算。尽管如此,大型模型仍可能需要高性能GPU支持。

Transformers 是一个强大的架构,但模型因其采用的自注意力机制,虽然能够有效地处理序列数据并捕获长距离依赖关系,但同时也容易导致在训练过程中出现OOM(Out of Memory,内存不足)或者达到GPU的运行时限制。

主要是因为

  1. 参数数量庞大:Transformer模型通常包含大量的参数,尤其是在模型层面进行扩展时(例如,增加层数或头数)。这些参数需要大量的内存来存储权重和梯度。
  2. 自注意力计算:自注意力机制需要对输入序列的每个元素与其他所有元素计算其相互关系,导致计算复杂度和内存需求随着输入长度的增加而显著增加。对于非常长的序列,这一点尤其突出。
  3. 激活和中间状态存储:在训练过程中,需要存储前向传播中的中间激活状态,以便于反向传播时使用。这增加了额外的内存负担。

为了解决这些问题,我们今天来总结以下一些常用的加速策略

固定长度填充

在处理文本数据时,由于文本序列的长度可能各不相同,但许多机器学习模型(尤其是基于Transformer的模型)需要输入数据具有固定的尺寸,因此需要对文本序列进行固定长度填充(padding)。

在使用Transformer模型时,填充部分不应影响到模型的学习。因此通常需要使用注意力掩码(attention mask)来指示模型在自注意力计算时忽略这些填充位置。通过这种固定长度填充和相应的处理方法,可以使得基于Transformer的模型能够有效地处理不同长度的序列数据。在实际应用中,这种方法是处理文本输入的常见策略。

 def fixed_pad_sequences(sequences, max_length, padding_value=0):
     padded_sequences = []
     for sequence in sequences:
         if len(sequence) >= max_length:
             padded_sequence = sequence[:max_length]  # Trim the sequence if it exceeds max_length
         else:
             padding = [padding_value] * (max_length - len(sequence))  # Calculate padding
             padded_sequence = sequence + padding  # Pad the sequence
         padded_sequences.append(padded_sequence)
     return padded_sequences

这种方式会将所有的序列填充成一个长度,这样虽然长度相同了,但是因为序列的实际大小本来就不同,同一批次很可能出现有很多填充的情况,所以就出现了动态填充策略。

动态填充是在每个批处理中动态填充输入序列到最大长度。与固定长度填充不同,在固定长度填充中,所有序列都被填充以匹配整个数据集中最长序列的长度,动态填充根据该批中最长序列的长度单独填充每个批中的序列。

这样虽然每个批次的长度是不同的,但是批次内部的长度是相同的,可以加快处理速度。

 def pad_sequences_dynamic(sequences, padding_value=0):
     max_length = max(len(seq) for seq in sequences)  # Find the maximum length in the sequences
     padded_sequences = []
     for sequence in sequences:
         padding = [padding_value] * (max_length - len(sequence))  # Calculate padding
         padded_sequence = sequence + padding  # Pad the sequence
         padded_sequences.append(padded_sequence)
     return padded_sequences

等长匹配

等长匹配是在训练或推理过程中将长度相近的序列分组成批处理的过程。等长匹配通过基于序列长度将数据集划分为桶,然后从这些桶中采样批次来实现的。

从上图可以看到,通过等长匹配的策略,减少了填充量,这样也可以加速计算

 def uniform_length_batching(sequences, batch_size, padding_value=0):
     # Sort sequences based on their lengths
     sequences.sort(key=len)

     # Divide sequences into buckets based on length
     buckets = [sequences[i:i+batch_size] for i in range(0, len(sequences), batch_size)]

     # Pad sequences within each bucket to the length of the longest sequence in the bucket
     padded_batches = []
     for bucket in buckets:
         max_length = len(bucket[-1])  # Get the length of the longest sequence in the bucket
         padded_bucket = []
         for sequence in bucket:
             padding = [padding_value] * (max_length - len(sequence))  # Calculate padding
             padded_sequence = sequence + padding  # Pad the sequence
             padded_bucket.append(padded_sequence)
         padded_batches.append(padded_bucket)

     return padded_batches

自动混合精度

自动混合精度(AMP)是一种通过使用单精度(float32)和半精度(float16)算法的组合来加速深度学习模型训练的技术。它利用了现代gpu的功能,与float32相比,使用float16数据类型可以更快地执行计算,同时使用更少的内存。

 import torch
 from torch.cuda.amp import autocast, GradScaler

 # Define your model
 model = YourModel()

 # Define optimizer and loss function
 optimizer = torch.optim.Adam(model.parameters(), lr=1e-3)
 criterion = torch.nn.CrossEntropyLoss()

 # Create a GradScaler object for gradient scaling
 scaler = GradScaler()

 # Inside the training loop
 for inputs, targets in dataloader:
     # Clear previous gradients
     optimizer.zero_grad()

     # Cast inputs and targets to the appropriate device
     inputs, targets = inputs.to(device), targets.to(device)

     # Enable autocasting for forward pass
     with autocast():
         # Forward pass
         outputs = model(inputs)
         loss = criterion(outputs, targets)

     # Backward pass
     # Scale the loss value
     scaler.scale(loss).backward()

     # Update model parameters
     scaler.step(optimizer)

     # Update the scale for next iteration
     scaler.update()

AMP在训练过程中动态调整计算精度,允许模型在大多数计算中使用float16,同时自动将某些计算提升为float32,以防止下流或溢出等数值不稳定问题。

Fp16 vs Fp32

双精度(FP64)消耗64位。符号值为1位,指数值为11位,有效精度为52位。

单精度(FP32)消耗32位。符号值为1位,指数值为8位,有效精度为23位。

半精度(FP16)消耗16位。符号值为1位,指数值为5位,有效精度为10位。

所以Fp16可以提高内存节省,并可以大大提高模型训练的速度。考虑到Fp16的优势和它在模型使用方面的主导区域,它非常适合推理任务。但是fp16会产生数值精度的损失,导致计算或存储的值不准确,考虑到这些值的精度至关重要。

另外就是这种优化师针对于分类任务的,对于回归这种需要精确数值的任务Fp16的表现并不好。

总结

以上这些方法,可以在一定程度上缓解内存不足和计算资源的限制,但是对于大型的模型我们还是需要一个强大的GPU。

https://avoid.overfit.cn/post/7240bee210cd408a90ca04279830040e

目录
相关文章
|
Dubbo Java 应用服务中间件
nacos常见问题之Nacos dubbo耗时严重如何解决
Nacos是阿里云开源的服务发现和配置管理平台,用于构建动态微服务应用架构;本汇总针对Nacos在实际应用中用户常遇到的问题进行了归纳和解答,旨在帮助开发者和运维人员高效解决使用Nacos时的各类疑难杂症。
|
2月前
|
机器学习/深度学习 人工智能 算法
GSPO:Qwen让大模型强化学习训练告别崩溃,解决序列级强化学习中的稳定性问题
这是7月份的一篇论文,Qwen团队提出的群组序列策略优化算法及其在大规模语言模型强化学习训练中的技术突破
721 0
GSPO:Qwen让大模型强化学习训练告别崩溃,解决序列级强化学习中的稳定性问题
|
12月前
|
机器学习/深度学习 人工智能 自然语言处理
NVIDIA Triton系列13-用 FasterTransformer 和 Triton 加速大型 Transformer 模型的推理
本文介绍了 NVIDIA FasterTransformer 库及其在加速大型 Transformer 模型推理中的应用。FasterTransformer 是一个高效、可扩展的库,支持分布式多 GPU 推理,特别适合处理具有数万亿参数的模型。文章还详细讲解了如何使用 FasterTransformer 和 NVIDIA Triton 推理服务器优化 GPT-J 和 T5 模型的推理性能,包括张量并行、流水线并行等技术。
410 0
NVIDIA Triton系列13-用 FasterTransformer 和 Triton 加速大型 Transformer 模型的推理
|
10月前
|
搜索推荐 物联网 PyTorch
Qwen2.5-7B-Instruct Lora 微调
本教程介绍如何基于Transformers和PEFT框架对Qwen2.5-7B-Instruct模型进行LoRA微调。
10514 34
Qwen2.5-7B-Instruct Lora 微调
|
9月前
|
人工智能 自然语言处理 数据挖掘
探索CRM系统:销售易、白码、纷享销客的品牌与功能分析
销售易CRM是一款功能强大的客户关系管理工具,支持移动化与社交化操作,销售人员可随时随地访问和更新客户信息。它融合了AI与大数据技术,提供智能数据分析,帮助企业洞察客户需求并预测销售趋势。销售易CRM覆盖营销、销售和服务全流程,并实现自动化管理,提升业务效率。其国际化能力满足跨国公司需求,支持多语言、多币种及海外服务器集群,助力企业全球化发展。适用于大型企业、注重销售效率与客户体验的企业,以及进行全流程数字化转型的企业。
|
9月前
|
机器学习/深度学习 数据采集 自然语言处理
HuggingFace Transformers 库深度应用指南
本文首先介绍HuggingFace Tra环境配置与依赖安装,确保读者具备Python编程、机器学习和深度学习基础知识。接着深入探讨Transformers的核心组件,并通过实战案例展示其应用。随后讲解模型加载优化、批处理优化等实用技巧。在核心API部分,详细解析Tokenizers、Models、Configuration和Dataset的使用方法。文本生成章节则涵盖基础概念、GPT2生成示例及高级生成技术。最后,针对模型训练与优化,介绍预训练模型微调、超参数优化和推理加速等内容。通过这些内容,帮助读者掌握HuggingFace Transformers的深度使用,开发高效智能的NLP应用。
1247 22
|
11月前
|
传感器 安全 Java
如何使用 CoAP 协议进行设备通信
CoAP(Constrained Application Protocol)是一种适用于资源受限设备的轻量级协议,常用于物联网(IoT)设备之间的通信。本文介绍如何使用 CoAP 协议进行设备通信,包括协议的基本概念、消息格式、请求与响应流程以及实际应用示例。
1451 4
|
12月前
|
机器学习/深度学习 人工智能 文字识别
ultralytics YOLO11 全新发布!(原理介绍+代码详见+结构框图)
本文详细介绍YOLO11,包括其全新特性、代码实现及结构框图,并提供如何使用NEU-DET数据集进行训练的指南。YOLO11在前代基础上引入了新功能和改进,如C3k2、C2PSA模块和更轻量级的分类检测头,显著提升了模型的性能和灵活性。文中还对比了YOLO11与YOLOv8的区别,并展示了训练过程和结果的可视化
18013 0
|
Shell
wandb.errors.UsageError: api_key not configured (no-tty). call wandb.login(key=[your_api_key])
wandb.errors.UsageError: api_key not configured (no-tty). call wandb.login(key=[your_api_key])
4249 0
wandb.errors.UsageError: api_key not configured (no-tty). call wandb.login(key=[your_api_key])
|
人工智能 JSON 文字识别
开源VLM新标杆 InternVL 2.0 怎么用?部署、微调尽在魔搭社区!
7月4日下午,世界人工智能大会科学前沿论坛,上海人工智能实验室OpenGVLab发布了InternVL 2.0 版本,中文名书生·万象。